A305195 Number of z-blobs summing to n. Number of connected strict integer partitions of n, with pairwise indivisible parts, that cannot be capped by a z-tree.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 3, 1, 1, 1, 4, 5, 6, 2, 1, 1, 4, 6, 7, 2, 2, 6
Offset: 1
Keywords
Examples
The a(30) = 2 z-blobs together with the corresponding multiset systems: (30): {{1,2,3}} (18,12): {{1,2,2},{1,1,2}} The a(47) = 3 z-blobs together with the corresponding multiset systems: (47): {{15}} (21,14,12): {{2,4},{1,4},{1,1,2}} (20,15,12): {{1,1,3},{2,3},{1,1,2}} The a(60) = 5 z-blobs together with the corresponding multiset systems: (60): {{1,1,2,3}} (42,18): {{1,2,4},{1,2,2}} (36,24): {{1,1,2,2},{1,1,1,2}} (30,18,12): {{1,2,3},{1,2,2},{1,1,2}} (21,15,14,10): {{2,4},{2,3},{1,4},{1,3}} The a(67) = 7 z-blobs together with the corresponding multiset systems: (67): {{19}} (45,12,10): {{2,2,3},{1,1,2},{1,3}} (42,15,10): {{1,2,4},{2,3},{1,3}} (40,15,12): {{1,1,1,3},{2,3},{1,1,2}} (33,22,12): {{2,5},{1,5},{1,1,2}} (28,21,18): {{1,1,4},{2,4},{1,2,2}} (24,18,15,10): {{1,1,1,2},{1,2,2},{2,3},{1,3}}
Links
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Comments