cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305197 Number of set partitions of [n] with symmetric block size list of length A004525(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 19, 56, 171, 470, 2066, 10299, 31346, 91925, 559987, 3939653, 11954993, 36298007, 282835456, 2571177913, 7785919355, 24158837489, 229359684137, 2557117944391, 7731656573016, 24350208829581, 272633076900991, 3601150175699409, 10876116332074739
Offset: 0

Views

Author

Alois P. Heinz, May 27 2018

Keywords

Crossrefs

Bisections give A275283 (even part), A305198 (odd part).

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n>s,
          binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
          b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
        end:
    a:= n-> coeff(b(n, 0), x, (n+sin(n*Pi/2))/2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1]*x, 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}]*x^2];
    a[n_] := Coefficient[b[n, 0], x, (n + Sin[n*Pi/2])/2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 13 2018, from Maple *)

Formula

a(n) = A275281(n,(n+sin(n*Pi/2))/2).