A305254 Number of factorizations f of n into factors greater than 1 such that the graph of f is a forest.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2
Offset: 1
Keywords
Examples
The a(72) = 14 factorizations: (72) (2*36) (3*24) (4*18) (8*9) (2*2*18) (2*3*12) (2*4*9) (3*3*8) (3*4*6) (2*2*2*9) (2*2*3*6) (2*3*3*4) (2*2*2*3*3) not counted: (2*6*6) because 6 and 6 share multiple divisors; likewise (6*12) because 6 and 12 share multiple divisors.
Crossrefs
Programs
-
Mathematica
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; Table[Length[Select[facs[n],Function[f,And@@(zensity[Select[f,Function[x,Divisible[#,x]]]]==-1&/@zsm[f])]]],{n,200}]
Extensions
Extensive clarification by Robert Munafo, Mar 22 2024
Comments