cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305301 Restricted growth sequence transform of A278222(A304760(n)), constructed from runlengths of 1-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 2, 2, 4, 2, 5, 4, 3, 1, 2, 5, 1, 1, 3, 3, 3, 3, 2, 5, 2, 2, 5, 6, 2, 2, 5, 2, 6, 3, 1, 7, 7, 2, 5, 2, 7, 2, 2, 4, 7, 2, 2, 7, 3, 1, 2, 7, 3, 1, 3, 5, 2, 2, 2, 8, 3, 1, 5, 5, 2, 2, 5, 3, 4, 4, 2, 7, 4, 2, 7, 9, 5, 5, 2, 5, 2, 2, 7, 3, 5, 5, 5, 5, 1, 1, 5, 6, 5, 5, 5, 5, 1, 1, 5, 10, 2
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

For all i, j: A304740(i) = A304740(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305301 = rgs_transform(vector(65538,n,A278222(A304760(n-1))));
    A305301(n) = v305301[1+n];

A305303 Restricted growth sequence transform of ordered pair [A278222(A304760(n)), A278222(A291760(n))], constructed from runlengths of 1-digits and 2-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 3, 7, 2, 4, 4, 8, 9, 10, 11, 12, 7, 13, 4, 14, 3, 15, 5, 16, 5, 7, 4, 17, 2, 4, 14, 18, 4, 8, 14, 19, 20, 21, 6, 22, 22, 23, 11, 8, 24, 10, 4, 25, 22, 23, 4, 22, 7, 26, 4, 27, 21, 28, 7, 14, 4, 8, 10, 29, 16, 30, 14, 17, 4, 8, 31, 32, 9, 12, 8, 27, 12, 19, 24, 33, 14, 17, 10, 34, 2, 4, 22, 16, 11, 14, 14, 17, 3, 15, 11, 35, 14, 17, 31, 34
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

Restricted growth sequence transform of A290093(A254103(n)).
For all i, j: a(i) = a(j) => A286633(i) = A286633(j) => A286632(i) = A286632(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    A291760(n) = A289814(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux305303(n) = [A278222(A304760(n)), A278222(A291760(n))];
    v305303 = rgs_transform(vector(65538,n,Aux305303(n-1)));
    A305303(n) = v305303[1+n];

A305432 Restricted growth sequence transform of A278222(A291763(n)), constructed from runlengths of 2-digits in base-3 representation of A245612(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 5, 2, 2, 2, 6, 4, 4, 2, 7, 1, 2, 1, 3, 2, 2, 6, 8, 3, 9, 2, 4, 6, 2, 4, 3, 4, 6, 4, 8, 1, 4, 4, 4, 1, 6, 2, 3, 3, 2, 2, 2, 2, 4, 2, 4, 1, 2, 2, 9, 8, 8, 6, 6, 1, 9, 10, 6, 4, 4, 4, 11, 2, 2, 2, 8, 2, 4, 7, 8, 2, 6, 4, 6, 6, 8, 4, 2, 2, 4, 1, 6, 9, 4, 6, 12, 2, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2018

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291763(n) = A289814(A245612(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305432 = rgs_transform(vector(65538,n,A278222(A291763(n-1))));
    A305432(n) = v305432[1+n];

A340382 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A291759(i)) = A278222(A291759(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 2, 4, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 1, 4, 4, 6, 2, 6, 1, 7, 2, 4, 2, 4, 1, 6, 2, 4, 2, 2, 4, 3, 1, 2, 3, 3, 1, 2, 1, 6, 2, 4, 3, 4, 2, 2, 4, 4, 2, 2, 2, 6, 5, 4, 2, 4, 1, 4, 1, 8, 1, 4, 3, 9, 2, 6, 3, 6, 2, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2021

Keywords

Crossrefs

Cf. A340377 (positions of ones).
Cf. also A305302.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v340382 = rgs_transform(vector(up_to,n,A278222(A291759(n))));
    A340382(n) = v340382[n];
Showing 1-4 of 4 results.