A305308 Decimal expansion of Lagrange(4) = sqrt(1517)/13.
2, 9, 9, 6, 0, 5, 2, 6, 2, 9, 8, 6, 9, 2, 9, 9, 4, 6, 9, 2, 3, 4, 1, 3, 9, 4, 0, 2, 6, 2, 6, 3, 1, 8, 6, 3, 9, 7, 5, 8, 3, 0, 2, 1, 9, 1, 5, 0, 0, 5, 6, 4, 4, 4, 8, 1, 4, 0, 5, 2, 6, 3, 4, 0, 6, 5, 6, 0, 1, 0, 3, 4, 0, 4, 3, 5, 8, 8, 8, 9, 9, 8, 0, 2, 7, 1, 3, 2, 6, 1, 7, 9, 0, 9, 3, 9, 8, 2, 1, 8, 5, 3, 0
Offset: 1
Examples
2.9960526298692994692341394026263186397583021915005644481405263406560103404...
References
- J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 174-175 and 221-224.
- J. F. Koksma, Diophantische Approximationen, 1936, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vierter Band, Teil 4, Julius Springer, Berlin, pp. 29-33.
- Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, p. 14.
- Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, 4. Abhandlung, pp. 1- 17, and part II., 8. Abhandlung, pp. 1-12. Sitzungsber. Heidelberger Akademie der Wiss., 1921, Carls Winters Universitätsbuchhandlung.
- Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 10. 6 B, pp. 312-314.
- Jörn Steuding, Diophantine Analysis, 2005, Chapman & Hall/CRC, pp. 80-82.
Links
- Encyclopedia of Mathematics, Diophantine approximations.
- A. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann, 15 (18) (1879) 381-406.
- A. A. Markoff, Sur les formes quadratiques binaires indéfinies (Second mémoire), Math. Ann, 17 (1880) 379-399.
Programs
-
Mathematica
RealDigits[Sqrt[1517]/13,10,120][[1]] (* Harvey P. Dale, Apr 12 2022 *)
Formula
Lagrange(4) = sqrt(9*M(4)^2 - 4)/M(4) = sqrt(9*13^2 - 4)/13 = sqrt(1517)/13, with the Markoff number M(4) = A002559(4) = 13.
Comments