A305312 Discriminant a(n) of the indefinite binary quadratic Markoff form m(n)*F_{m(n)}(x, y) with m(n) = A002559(n), for n >= 1.
5, 32, 221, 1517, 7565, 10400, 71285, 257045, 338720, 488597, 1687397, 3348896, 8732021, 15800621, 22953677, 75533477, 157326845, 296631725, 376282400, 514518485, 741527357, 1078334240, 1945074605, 7391012837, 10076746685, 12768548000, 16843627085, 24001135925, 34830756896, 50658755621, 83909288237, 164358078917, 342312755621, 347220276512, 781553243021, 1636268213885, 2244540316037, 2379883179965, 3756053306912, 7713367517021
Offset: 1
Examples
a(5) = 7565 because 9*29^2 - 4 = 7565.
References
- J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
Formula
a(n) = 9*m(n)^2 - 4 = 9*A002559(n)^2 - 4, n >= 1.
Comments