cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A308687 a(n) = A305312(n)/4 if A305312(n)is even and a(n) = (A305312(n) - 1)/4 if A305312(n) is odd, for n >= 1.

Original entry on oeis.org

1, 8, 55, 379, 1891, 2600, 17821, 64261, 84680, 122149, 421849, 837224, 2183005, 3950155, 5738419, 18883369, 39331711, 74157931, 94070600, 128629621, 185381839, 269583560, 486268651, 1847753209, 2519186671, 3192137000, 4210906771, 6000283981, 8707689224, 12664688905, 20977322059, 41089519729, 85578188905, 86805069128, 195388310755, 409067053471
Offset: 1

Views

Author

Wolfdieter Lang, Jul 15 2019

Keywords

Comments

These numbers a(n), depending on the parity of the discriminants of Markoff forms Disc(n) = b(n)*(b(n) + 4) = A305312(n), with b(n) = A324250(n), enter the definition of representative parallel forms of Disc(n) and representation -m(n)^2, where m(n) = A002559(n) = (b(n) + 2)/3 are the Markoff numbers, in the following way. FPara(n) := [-m(n)^2, 2*j(n), -(j^2(n) - a(n))/m(n)^2] or [-m(n)^2, 2*j(n) + 1, -(j(n)^2 +j(n) - a(n))/m(n)^2], if Disc(n) is even or odd, respectively, with j(n) from the interval [0, m(n)^2 - 1] such that the third member of FPara(n) becomes an integer. See the W. Lang link in A324251, section 3 for representative parallel forms, and the Buell and Scholz-Schoeneberg references given there.
The trivial solution (x = 1, y = 0) of each of the #rpapfs (number of representative parallel and primitive forms) Fpara(n;k), for k = 1, 2, ..., #rpapfs, representing -m(n)^2 leads to a fundamental solution of any primitive form F = [a, b, c] = a*x^2 + b*x*y + c*y^2 of discriminant Disc := b^2 - 4*a*c and representing - m(n)^2, by a certain proper (determinant +1) equivalence transformation. For the Markoff triples the principal reduced form F_p = [1, b(n), -b(n)], representing -m(n)^2 is of interest. It is a member of a 2-cycle of reduced forms together with F = [-b(n), b(n), 1].

Crossrefs

Formula

a(n) = A305312(n)/4 or a(n) = (A305312(n) - 1)/4 if A305312(n) is even or odd, respectively, where A305312(n) = Disc(n) = b(n)*(b(n) + 4) with b(n) = 3*m(n) - 2 = A324250(n), and m(n) = A002559(n), for n >= 1.

A305310 Numbers k(n) used for Cassels's Markoff forms MF(n) corresponding to the conjectured unique Markoff triples MT(n) with maximal entry m(n) = A002559(n), for n >= 1.

Original entry on oeis.org

0, 1, 2, 5, 12, 13, 34, 70, 75, 89, 179, 233, 408, 507, 610, 1120, 1597, 2378, 2673, 2923, 3468, 4181, 6089, 10946, 13860, 15571, 16725, 19760, 23763, 28657, 39916, 51709, 80782, 75025, 113922, 162867, 206855, 196418, 249755, 353702
Offset: 1

Views

Author

Wolfdieter Lang, Jun 26 2018

Keywords

Comments

For these Markoff forms see Cassels, p. 31. A link to the two original Markoff references is given in A305308.
MF(n) = f_{m(n)}(x, y) = m(n)*F_{m(n)}(x, y) = m(n)*x^2 + (3*m(n) - 2*k(n))*x*y + (l(n) - 3*k(n))*y^2, with the Markoff number m = m(n) = A002559(n) and l(n) = (k(n)^2 + 1)/m(n), for n >= 1.
Every m(n) is proved to appear as largest member of a Markoff triple MT(n) = (m_1(n), m_2(n), m(n)), with positive integers m_1(n) < m_2(n) < m(n) for n >= 3 (MT(1) = (1, 1, 1) and MT(2) = (1, 1, 2)) satisfying the Markoff equation m_1(n)^2 + m_2(n)^2 + m(n)^2 = 3*m_1(n)*m_2(n)*m(n). The famous Markoff uniqueness conjecture is that m(n) as largest member determines exactly one ordered triple MT(n). See, e.g., the Aigner reference, pp. 38-39, and Corollary 3.5, p. 48. [In numerating the sequence with n related to A002559(n) this conjecture is assumed to be true. - Wolfdieter Lang, Jul 29 2018]
The nonnegative integers k(n) are defined for the Markoff forms given by Cassels by k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n). The k1 and k2 sequences are k1 = [0, 1, 2, 5, 17, 13, 34, 99, 119, 89, 179, 233, 577, 818, 610, 1777, 1597, 3363, 2673, 2923, 5609, 4181, 6089, 10946, 19601, 22095, 26536, 31881, 38447, 28657, 39916, 51709, 114243, 75025, 113922, 263522, 206855, 196418, 396263, 572063, ...], and k2 = [0, 1, 3, 8, 12, 21, 55, 70, 75, 144, 254, 377, 408, 507, 987, 1120, 2584, 2378, 3793, 4638, 3468, 6765, 8612, 17711, 13860, 15571, 16725, 19760, 23763, 46368, 56641, 83428, 80782, 121393, 180763, 162867, 292538, 317811, 249755, 353702, ...].
The discriminant of the form MF(n) = f_{m(n)}(x, y) is D(n) = 9*m(n)^2 - 4. D(n) = A305312(n), for n >= 1. Because D(n) > 0 (not a square) this is an indefinite binary quadratic form, for n >= 1. See Cassels Fig. 2 on p. 32 for the Markoff tree with these forms.
The quadratic irrational xi, determined by the solution with positive square root of f_{m(n)}(x, 1) = 0, is xi(n) = ((2*k - 3*m) + sqrt(D))/(2*m) (the argument n has been dropped). The regular continued fraction is eventually periodic, but not purely periodic. One can find equivalent Markoff forms determining purely periodic quadratic irrationals. The corresponding k sequence is given in A305311.
For the approximation of xi(n) with infinitely many rationals (in lowest terms) Perron's unimodular invariant M(xi) enters. For quadratic irrationals M(xi) < 3, and the values coincide with the discrete Lagrange spectrum < 3: M(xi(n)) = Lagrange(n) = sqrt{D(n)}/m(n), n >= 1. For n=1..4 see A002163, A010466, A200991 and A305308.

Examples

			n = 5: a(5) = k(5) = 12 because m(5) = A002559(5) = 29 with the triple MT(5) = (2, 5, 29). Whence 2*k1(5) - 5 == 0 (mod 29) for k1(5) = 17 < 29, and 5*k2(5) - 2 == 0 (mod 29) leads to k2(5) = 12. The smaller value is k2(5) = k(5) = 12. This leads to the form coefficients MF(5) = [29, 63, -31].
The forms MF(n) = [m(n), 3*m(n) - k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 + 1)/m(n) begin: [1, 3, 1], [2, 4, -2], [5, 11, -5], [13, 29, -13], [29, 63, -31], [34, 76, -34], [89, 199, -89], [169, 367, -181], [194, 432, -196], [233, 521, -233], [433, 941, -463], [610, 1364, -610], [985, 2139, -1055], [1325, 2961, -1327], [1597, 3571, -1597], [2897, 6451, -2927], [4181, 9349, -4181], [5741, 12467, -6149], [6466, 14052, -6914], [7561, 16837, -7639] ... .
The quadratic irrationals xi(n) = ((2*k(n) - 3*m(n)) + sqrt(D(n)))/(2*m(n)) begin: (-3 + sqrt(5))/2, -1 + sqrt(2), (-11 + sqrt(221))/10, (-29 + sqrt(1517))/26, (-63 + sqrt(7565))/58, (-19 + 5*sqrt(26))/17, (-199 + sqrt(71285))/178, (-367 + sqrt(257045))/338, (-108 + sqrt(21170))/97, (-521 + sqrt(488597))/466, (-941 + sqrt(1687397))/866, (-341 + sqrt(209306))/305, (-2139 + sqrt(8732021))/1970, (-2961 + sqrt(15800621))/2650, (-3571 + sqrt(22953677))/3194, (-6451 + sqrt(75533477))/5794, (-9349 + sqrt(157326845))/8362, (-12467 + 5*sqrt(11865269))/11482, (-3513 + 5*sqrt(940706))/3233, (-16837 + sqrt(514518485))/15122, ... .
The invariant M(xi(n)) = Lagrange(n) numbers begin with n >=1: sqrt(5), 2*sqrt(2), (1/5)*sqrt(221), (1/13)*sqrt(1517), (1/29)*sqrt(7565), (10/17)*sqrt(26), (1/89)*sqrt(71285), (1/169)*sqrt(257045), (2/97)*sqrt(21170), (1/233)*sqrt(488597), (1/433)*sqrt(1687397), (2/305)*sqrt(209306), (1/985)*sqrt(8732021), (1/1325)*sqrt(15800621), (1/1597)*sqrt(22953677), (1/2897)*sqrt(75533477), (1/4181)*sqrt(157326845), (5/5741)*sqrt(11865269), (10/3233)*sqrt(940706), (1/7561)*sqrt(514518485), ... .
		

References

  • Martin Aigner, Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013.
  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 172-180 and 222-224.
  • Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, Sitzungsber. Heidelberger Akademie der Wiss., 1921, 4. Abhandlung, pp. 1-17 , and part II., 8. Abhandlung, pp.1-12, Carl Winters Universitätsbuchhandlung.

Crossrefs

Formula

a(n) = k(n) has been defined in terms of the (conjectured unique) ordered Markoff triple MT(n) = (m_1(n), m_2(n), m(n)) with m(n) = A002559(n) in the comment above as k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n).

A305311 Numbers k(n) used for Markoff forms determining quadratic irrationals with purely periodic continued fractions.

Original entry on oeis.org

2, 5, 12, 31, 70, 81, 212, 408, 463, 555, 1045, 1453, 2378, 3157, 3804, 6914, 9959, 13860, 15605, 18045, 21622, 26073, 35491, 68260, 80782, 90903, 103247, 123042, 148183, 178707, 233030, 321983, 470832, 467861, 703292, 1015645, 1205641, 1224876, 1541791, 2205232
Offset: 1

Views

Author

Wolfdieter Lang, Jun 26 2018

Keywords

Comments

The indefinite binary quadratic Markoff form MF(n) = f_{m(n}(x, y) = m(n)*x^2 +(3*m(n) - 2*k(n))*x*y + ((k(n)^2 +1)/m(n) - 3*k(n))*y^2 with m(n) = A002559(n), for n >= 1, leads to purely periodic continued fractions for the solution x = xi(n) of f_{m(n)}(x, 1) = 0 with positive square root, namely xi(n) = ((2*k(n) - 3*m(n)) + sqrt(D(n)))/(2*m(n)) with discriminant D(n) = A305312(n). This form f_{m(n)}(x, y) is equivalent to the form fC_{m(n)}(x, y) given by Cassels (p. 31) with the k-sequence given in A305310.
The uniqueness conjecture (see A305310, also for the Aigner reference) is here assumed to be true. - Wolfdieter Lang, Jul 29 2018

Examples

			The form coefficients [m(n), 3*m(n) - 2*k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 +1)/m(n), n >= 1, begin: [1, -1, -1], [2, -4, -2], [5, -9, -7], [13, -23, -19], [29, -53, -41], [34, -60, -50], [89, -157, -131], [169, -309, -239], [194, -344, -284], [233, -411, -343], [433, -791, -613], [610, -1076, -898], [985, -1801, -1393], [1325, -2339, -1949], [1597, -2817, -2351], [2897, -5137, -4241], [4181, -7375, -6155], [5741, -10497, -8119], [6466, -11812, -9154], [7561, -13407, -11069], ... .
The corresponding quadratic irrationals xi(n) with purely periodic continued fraction representations begin: (1 + sqrt(5))/2, 1 + sqrt(2), (9+sqrt(221))/10, (23 + sqrt(1517))/26, (53 + sqrt(7565))/56, (15 + 5*sqrt(26))/17, (157 + sqrt(71285))/178, (309 + sqrt(257045))/338, (86 + sqrt(21170))/97, (411 + sqrt(488597))/466, (791 +  sqrt(1687397))/866, (269 + sqrt(209306))/305, (1801 + sqrt(8732021))/1970, (2339 + sqrt(15800621))/2650, (2817 + sqrt(22953677))/3194, (5137 + sqrt(75533477))/5794, (7375 + sqrt(157326845))/8362, (10497 +  5*sqrt(11865269))/11482, (2953 + 5*sqrt(940706))/3233, (13407 + sqrt(514518485))/15122, ... .
		

References

  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange Spectra, Am. Math. Soc., Providence. Rhode Island, 1989.

Crossrefs

Formula

a(n) = A305310(n) + 2, n >= 1. The proof is based on Theorem 3, pp. 23-24, of the Cusick-Flahive reference. See also the W. Lang link under A305310. - Wolfdieter Lang, Jul 29 2018

A305313 Smallest member m_1(n) of the ordered Markoff triple MT(n) with largest member m(n) = A002559(n), n >= 1. These triples are conjectured to be unique.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 5, 1, 2, 13, 1, 5, 1, 2, 5, 13, 34, 1, 29, 1, 2, 29, 5, 13, 89, 1, 5, 34, 2, 1, 13, 233, 169, 1, 5, 34, 2, 29, 1, 5, 194, 13, 89, 610, 29, 1, 194, 2, 169, 433, 1, 5, 13, 34, 89, 985
Offset: 1

Views

Author

Wolfdieter Lang, Jun 25 2018

Keywords

Comments

The second member m_2 of the Markoff (Markov) triple MT(n) = (m_1(n), m_2(n), m(n)) with m_1(n) <= m_2(n) <= m(n), for n >= 1, with m(n) = A002559(n) is given in A305314(n). For n>=3 the inequalities are strict. The existence of MT(n) with largest number m(n) is proved. The uniqueness is conjectured. The Markoff equation is (the argument n is dropped) m_1^2 + m_2^2 + m^2 = 3*m_1*m_2*m. See the references under A002559.

Examples

			The Markoff triples begin: (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), (1, 610, 1597), (5,194,2897), (1, 1597, 4181), (2, 985, 5741), (5, 433, 6466), (13, 194, 7561), (34, 89, 9077), ...
		

Crossrefs

Formula

a(n) = m_1(n) is the fundamental proper solution x of the indefinite binary quadratic form x^2 - 3*m(n)*x*y + y^2, of discriminant D(n) = 9*m(n)^2 - 4 = A305312(n), representing -m(n)^2, for n >= 1, with x <= y. The uniqueness conjecture means that there are no other such fundamental solutions.

A305314 Second member m_2(n) of the Markoff triple MT(n) with largest member m(n) = A002559(n), and smallest member m_1(n) = A305313(n), for n >= 1. These triples are conjectured to be unique.

Original entry on oeis.org

1, 1, 2, 5, 5, 13, 34, 29, 13, 89, 29, 233, 169, 34, 610, 194, 1597, 985, 433, 194, 89, 4181, 169, 10946, 5741, 433, 2897, 1325, 233, 28657, 6466, 1325, 33461, 75025, 7561, 610, 985, 196418, 43261, 9077, 195025, 14701, 514229, 96557, 2897, 51641, 9077, 1597, 37666, 1346269, 7561, 1136689, 14701, 6466, 3524578, 646018, 294685, 135137, 62210, 5741
Offset: 1

Views

Author

Wolfdieter Lang, Jun 25 2018

Keywords

Comments

See A305313 for comments, and A002559 for references.

Examples

			See A305313 for the first Markoff triples MT(n).
		

Crossrefs

Formula

a(n) = m_2(n) is the fundamental proper solution y of the indefinite binary quadratic form x^2 - 3*m(n)*x*y + y^2, of discriminant D(n) = 9*m(n)^2 - 4 = A305312(n), representing -m(n)^2, for n >= 1, with x <= y. The uniqueness conjecture means that there are no other such fundamental solutions.

A324250 Sequence a(n) = 3*A002559(n) - 2 determining the principal reduced indefinite binary quadratic form [1, a(n), -a(n)] for Markoff triples.

Original entry on oeis.org

1, 4, 13, 37, 85, 100, 265, 505, 580, 697, 1297, 1828, 2953, 3973, 4789, 8689, 12541, 17221, 19396, 22681, 27229, 32836, 44101, 85969, 100381, 112996, 129781, 154921, 186628, 225073, 289669, 405409, 585073, 589252, 884053, 1279165, 1498177, 1542685, 1938052, 2777293, 3410065, 3836452, 4038805
Offset: 1

Views

Author

Wolfdieter Lang, Mar 04 2019

Keywords

Comments

The indefinite binary quadratic form F(n,x,y) = x^2 - 3*m(n)*x*y + y^2 = [1, -3*m(n), 1] representing -m(n)^2 with m(n) = A002559(n), determines Markoff triples MT(n) = (x(n) = A305313(n), y(n) = A305314(n), m(n)) with x(n) < y(n) < m(n), for n >= 3. For n = 1 and 2: x(n) = y(n) = 1. The Frobenius-Markoff conjecture is that this solution is unique. This form F(n,x,y) has discriminant D(n) = (3*m(n))^2 - 4 = a(n)*(a(n) + 4) = A305312(n) > 0.
Because -3*m(n) < 0 this form F(n,x,y) is not reduced (see e.g., the Buell reference, or the W. Lang link in A225953 for the definition).
The principal reduced form for F(n,x,y) is prF(n,X,Y) = X^2 + a(n)*X*Y - a(n)*Y^2 = [1, a(n), -a(n)]. (See, e.g., Lemma 2 of the W. Lang link in A225953 where b = a(n), f(D(n)) = ceiling(sqrt(D(n))) = 3*m(n), and D(n) and f(D(n)) have the same parity.) The relation between these forms is F(n,Y,Y-X) = prF(n,X,Y) with Y > 0, Y-X > 0, and X <= 0 (for n >= 3, X < 0).

Examples

			n = 3 with a(3) = 13: MT(3) = (1, 2, 5), F(3,x,y) = [1, -3*5, 1], prF(3,X,Y) = [1, 13, -13]. prF(3,X,Y) = -5^2 has two proper fundamental solutions with Y > 0, namely (-1, 1) and (1, 2). The unique solution with Y > 0, X < 0, and Y-X < 5 is (X, Y) = (-1, 1) corresponding to (x,y) = (1, 2) for MT(3).
The other fundamental solution (1, 2) corresponds to the unordered Markoff triple (2, 1, 5) (x > y, X > 0). The next solution in this class with X < 0 is (-12, 1) corresponding to the unordered triple (1, 13, 5) (Y-X = 13 > 5).
		

References

  • D. A. Buell, Binary quadratic forms, 1989, Springer, p. 21.

Crossrefs

Formula

a(n) = 3*A002559(n) - 2, for n >= 1.
Showing 1-6 of 6 results.