cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305312 Discriminant a(n) of the indefinite binary quadratic Markoff form m(n)*F_{m(n)}(x, y) with m(n) = A002559(n), for n >= 1.

Original entry on oeis.org

5, 32, 221, 1517, 7565, 10400, 71285, 257045, 338720, 488597, 1687397, 3348896, 8732021, 15800621, 22953677, 75533477, 157326845, 296631725, 376282400, 514518485, 741527357, 1078334240, 1945074605, 7391012837, 10076746685, 12768548000, 16843627085, 24001135925, 34830756896, 50658755621, 83909288237, 164358078917, 342312755621, 347220276512, 781553243021, 1636268213885, 2244540316037, 2379883179965, 3756053306912, 7713367517021
Offset: 1

Views

Author

Wolfdieter Lang, Jun 26 2018

Keywords

Comments

Subsequence of A079896.
For the Markoff form f_{m(n)}(x, y) = m(n)*F_{m(n)}(x, y) of Cassels (pp. 31-39), see the comments on A305310. Some references are given in A002559, A305308 and A305310.
f_m(x, y) is an indefinite binary quadratic form because the discriminant is positive.
a(n) is also the discriminant D(n) = a(n) of the indefinite binary quadratic form determining the Markoff triple MT(n) = (x(n), y(n), m(n)) if the largest member is m(n) = A002559(n) and x(n) <= y(n) <= m(n). This is the form x^2 - 3*m*x*y + y^2 = -m^2 (with dropped argument n), or in reduced version X^2 + b*X*Y - b*Y^2 = -m^2, with b = b(n) = 3*m(n) - 2, where X = X(n) = y(n) - x(n) and Y = Y(n) = y(n). The uniqueness of such Markoff triples MT(n) with given largest members m(n) is a conjecture.
To find reduced forms one needs f(n) := ceiling(sqrt(D(n))) which is 3*m(n) because (3*m-1)^2 < 9*m^2 - 4 < (3*m)^2, due to 6*m(n) > 5, for n >= 1.
If the forms for a Markoff triple with largest member m are numerated with n giving m as m(n) = A002559(n)as in the present entry then the uniqueness conjecture is assumed to be true. Otherwise certain m(n) will lead to several different forms. - Wolfdieter Lang, Jul 30 2018

Examples

			a(5) = 7565 because 9*29^2 - 4 = 7565.
		

References

  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.

Crossrefs

Formula

a(n) = 9*m(n)^2 - 4 = 9*A002559(n)^2 - 4, n >= 1.

A305311 Numbers k(n) used for Markoff forms determining quadratic irrationals with purely periodic continued fractions.

Original entry on oeis.org

2, 5, 12, 31, 70, 81, 212, 408, 463, 555, 1045, 1453, 2378, 3157, 3804, 6914, 9959, 13860, 15605, 18045, 21622, 26073, 35491, 68260, 80782, 90903, 103247, 123042, 148183, 178707, 233030, 321983, 470832, 467861, 703292, 1015645, 1205641, 1224876, 1541791, 2205232
Offset: 1

Views

Author

Wolfdieter Lang, Jun 26 2018

Keywords

Comments

The indefinite binary quadratic Markoff form MF(n) = f_{m(n}(x, y) = m(n)*x^2 +(3*m(n) - 2*k(n))*x*y + ((k(n)^2 +1)/m(n) - 3*k(n))*y^2 with m(n) = A002559(n), for n >= 1, leads to purely periodic continued fractions for the solution x = xi(n) of f_{m(n)}(x, 1) = 0 with positive square root, namely xi(n) = ((2*k(n) - 3*m(n)) + sqrt(D(n)))/(2*m(n)) with discriminant D(n) = A305312(n). This form f_{m(n)}(x, y) is equivalent to the form fC_{m(n)}(x, y) given by Cassels (p. 31) with the k-sequence given in A305310.
The uniqueness conjecture (see A305310, also for the Aigner reference) is here assumed to be true. - Wolfdieter Lang, Jul 29 2018

Examples

			The form coefficients [m(n), 3*m(n) - 2*k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 +1)/m(n), n >= 1, begin: [1, -1, -1], [2, -4, -2], [5, -9, -7], [13, -23, -19], [29, -53, -41], [34, -60, -50], [89, -157, -131], [169, -309, -239], [194, -344, -284], [233, -411, -343], [433, -791, -613], [610, -1076, -898], [985, -1801, -1393], [1325, -2339, -1949], [1597, -2817, -2351], [2897, -5137, -4241], [4181, -7375, -6155], [5741, -10497, -8119], [6466, -11812, -9154], [7561, -13407, -11069], ... .
The corresponding quadratic irrationals xi(n) with purely periodic continued fraction representations begin: (1 + sqrt(5))/2, 1 + sqrt(2), (9+sqrt(221))/10, (23 + sqrt(1517))/26, (53 + sqrt(7565))/56, (15 + 5*sqrt(26))/17, (157 + sqrt(71285))/178, (309 + sqrt(257045))/338, (86 + sqrt(21170))/97, (411 + sqrt(488597))/466, (791 +  sqrt(1687397))/866, (269 + sqrt(209306))/305, (1801 + sqrt(8732021))/1970, (2339 + sqrt(15800621))/2650, (2817 + sqrt(22953677))/3194, (5137 + sqrt(75533477))/5794, (7375 + sqrt(157326845))/8362, (10497 +  5*sqrt(11865269))/11482, (2953 + 5*sqrt(940706))/3233, (13407 + sqrt(514518485))/15122, ... .
		

References

  • J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
  • Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange Spectra, Am. Math. Soc., Providence. Rhode Island, 1989.

Crossrefs

Formula

a(n) = A305310(n) + 2, n >= 1. The proof is based on Theorem 3, pp. 23-24, of the Cusick-Flahive reference. See also the W. Lang link under A305310. - Wolfdieter Lang, Jul 29 2018

A324601 Unique solution x of the congruence x^2 = -1 (mod m(n)), with m(n) = A002559(n) (Markoff numbers) in the interval [1, floor(m(n)/2)], assuming the Markoff uniqueness conjecture, for n >= 3.

Original entry on oeis.org

2, 5, 12, 13, 34, 70, 75, 89, 179, 133, 183, 182, 610, 1120, 919, 2378, 1719, 2923, 2216, 4181, 5479, 10946, 13860, 2337, 16725, 19760, 13563, 13357, 39916, 822, 26982, 15075, 3952, 162867, 117922, 196418, 249755, 201757, 259304, 86545, 464656, 562781, 651838, 770133, 553093, 1116300, 1354498, 1346269, 56794, 58355, 3087111, 2435532, 166408, 3729600, 4440035, 923756
Offset: 3

Views

Author

Wolfdieter Lang, Jul 26 2019

Keywords

Comments

See the Aigner reference, Corollary 3.17., p. 58. If this congruence is solvable uniquely for integer x in the given interval then the Markoff uniqueness conjecture is true.
For the values k(n) = (a(n)^2 + 1)/m(n), for n >= 3, see A309161.
Many of these values coincide with A305310.

Crossrefs

A305317 a(n) gives the length of the period of the regular continued fraction of the quadratic irrational of any Markoff form representative Mf(n), n >= 1 (assuming the uniqueness conjecture).

Original entry on oeis.org

1, 1, 4, 6, 6, 8, 10, 8, 10, 12, 10, 14, 10, 14, 16, 14, 18, 12, 14, 16, 18, 20, 14, 22, 14, 16, 18, 20, 22, 24, 18, 22, 16, 26, 22, 26, 18, 28, 22, 26
Offset: 1

Views

Author

Wolfdieter Lang, Jul 30 2018

Keywords

Comments

The index n enumerates the Markoff triples with largest member m from A002559 in increasing order. If the Markoff-Frobenius uniqueness conjecture (see, e.g. the book of Aigner) is true then the triples can be numbered by n if the largest member is m(n) = A002559(n). In the other (unlikely) case there may be more than one triple (hence forms) for some Markoff numbers m from A002559, and then one orders these triples lexicographically.
The indefinite binary quadratic Markoff form Mf(n) = Mf(n;x,y) for the given Markoff number m(n) = A002559(n), n >= 1, (assuming that the mentioned uniqueness conjecture is true) is m(n)*x^2 + (3*m(n) - 2*k(n))*x*y + (l(n) - 3*k(n))y^2 with l(n) = (k(n)^2 +1)/m(n), and k(n) is defined for the representative form (of the unimodualar equvivalence class), e.g., in Cassels as k(n) = k_C(n) = A305310(n). The qudadratic irrational xi(n) is the solution of Mf(n;x,1) = 0 with the positive root. For the representative forms used by Cassels the regular continued fractions for xi(n) = xi_C(n) are not purely periodic. The smallest preperiod is -1 for n = 1 and 0 for n >= 2.
For the representative Mf(n) with k(n) = A305311(n) = k_C(n) + 2*m(n) one obtains purely periodic regular continued fractions for the quadratic irrationals xi(n). They were considered by Perron, pp. 5-6, for n=1..11. See the examples below, and in the W. Lang link, Table 2.

Examples

			The periods for the representative form Mf(n) with k(n) = A305311(n) are given for n=1..40 in the W. Lang link in Table 2.
The first 11 examples (given by Perron) are:
  n     periods             length  quadratic irrationals xi  Markoff form coeffs.
  1:    (1)                    1    (1 + sqrt(5))/2           [1, -1, -1]
  2:    (2)                    1     1 + sqrt(2)              [2, -4, -2]
  3:    (2_2, 1_2)             4    (9 + sqrt(221))/10        [5, -9, -7]
  4:    (2_2, 1_4)             6    (23 + sqrt(1517))/26      [13, -23,-19]
  5:    (2_4, 1_2)             6    (53 + sqrt(7565))/58      [29, -53, -4]
  6:    (2_2, 1_6)             8    (15 + 5*sqrt(26))/17      [34, -60, -50]
  7:    (2_2, 1_8)            10    (157 + sqrt(71285))/178   [89, -157, -131]
  8:    (2_6, 1_2)             8    (309 + sqrt(257045))/338  [169, -309, -239]
  9:    (2_2, 1_2, 2_2, 1_4)  10    (86 + sqrt(21170))/97     [194, -344, -284]
  10:   (2_2, 1_10)           12    (411 + sqrt(488597))/466  [233, -411, -343]
  11:   (2_4, 1_2, 2_2, 1_2)  10    (791 + sqrt(1687397))/866 [433, -791, -613]
  ...
		

References

  • Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
  • Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, II, pp. 1-12, Sitzungsber. Heidelberger Akademie der Wiss., 1921, 8. Abhandlung, Carl Winters Universitätsbuchhandlung.

Crossrefs

Showing 1-4 of 4 results.