1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 8, 8, 4, 2, 4, 2, 2, 4, 4, 4, 4, 8, 2, 2, 8, 2, 2, 4, 8, 4, 4, 4, 8, 4, 2, 8, 8, 4, 8, 2, 8, 8, 4, 4, 4, 8, 2, 4, 4, 4, 4, 4, 4, 2, 8, 4, 2, 16, 2, 4, 4, 16, 4, 2, 8, 8, 16, 8, 2, 2, 4, 4, 4, 2, 8, 4, 8, 4
Offset: 1
n = 6: m(6) = 34 = 2*17, a(6) = 2. The (primitive) reduced principal form is F_p(6) = [1, 100, -100], and both representative parallel primitive forms are connected to this form via an equivalence transformation. The two proper fundamental solutions with X < 0 of F_p(6) = -34^2 are (X, Y)_1 = (-12, 1) and (X, Y)_2 = (-88, 1). They belong to the ordered Markoff triple MT(6) = (1, 13, 34) and the unordered one (1, 89, 34), respectively. The latter triple has 89 = 3*1*34 - 13, and is the ordered triple (1, 34, 89), not of interest in the search for ordered solution with maximum m(6).
Note that there are other proper fundamental positive solutions coming from the imprimitive form F = [4, 96, -74], namely (X, Y)_3 = (19, 26) and (X, Y)_4 = (133, 178) which are not counted here.
n = 12: m(12) = 610 = 2*5*61, a(12) = 4. The reduced principal form F_p(12) = [1, 1828, -1828], representing -610^2, has only two proper fundamental solutions with X < 0, Y > 0: (X, Y)_1 = (-232, 1), corresponding to the ordered Markoff triple MT(12) = (1, 233, 610), and (X, Y)_2 = (-1596, 1), corresponding to the unordered triple (1, 1597, 610). These solutions follow from the rpapfs [-372100, 742836, -370735] with t-tuple (-1, 231) and [-372100, 1364, 1] with t-tuple (1596), respectively. The other two such proper fundamental solutions are (X, Y)_3 = (-6, 25) for the reduced form F(12) = [625, 1664, -232], and (X, Y)_4 = (-25, 6) for the associated form Fbar(12) = [-232, 1664, 625], both representing -m(12)^2. These last two reduced forms belong to different (associated) 8-cycles. The corresponding rpapfs are [-372100, 623764, -261407] and [-372100, 120436, -9743].
Comments