cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305300 Ordinal transform of A305430, the smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over Q.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2018

Keywords

Crossrefs

Cf. A206074 (gives the positions of other 1's after the initial one).
Cf. also A175851.

Programs

  • Mathematica
    binPol[n_, x_] := With[{bb = IntegerDigits[n, 2]}, bb.x^Range[Length[bb]-1, 0, -1]];
    ip[n_] := If[IrreduciblePolynomialQ[binPol[n, x]], 1, 0];
    A305430[n_] := Module[{k = n + 1}, While[ip[k] == 0, k++]; k];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A305430[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    A257000(n) = polisirreducible(Pol(binary(n)));
    A305429(n) = if(n<3,1, my(k=n-1); while(k>1 && !A257000(k),k--); (k));
    A305300(n) = if((1==n)||(1==A257000(n)),1,1+(n-A305429(n)));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A305430(n) = { my(k=1+n); while(!A257000(k),k++); (k); };
    v305300 = ordinal_transform(vector(up_to,n,A305430(n)));
    A305300(n) = v305300[n];

Formula

a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], a(n) = 1, otherwise a(n) = 1 + n - A305429(n).

A305420 Smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over GF(2)[X].

Original entry on oeis.org

2, 3, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25, 25, 25, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 47, 47, 47, 47, 47, 47, 55, 55, 55, 55, 55, 55, 55, 55, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 73, 73, 73, 73, 73, 73, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

a(n) is the smallest term of A014580 greater than n.

Crossrefs

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };

Formula

For n >= 1, a(n) = A091228(1+n).

A305429 Largest k < n whose binary expansion encodes an irreducible (0,1)-polynomial over Q, with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 25, 25, 25, 25, 29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 47, 47, 53, 53, 55, 55, 55, 55, 59, 59, 61, 61, 61, 61, 61, 61, 67, 67, 69, 69, 71, 71, 73, 73, 73, 73, 77, 77, 79, 79, 81, 81, 83, 83, 83, 83, 87, 87
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

For n >= 3, a(n) is the largest term of A206074 less than n.

Crossrefs

Programs

  • PARI
    A257000(n) = polisirreducible(Pol(binary(n)));
    A305429(n) = if(n<3,1, my(k=n-1); while(k>1 && !A257000(k),k--); (k));
Showing 1-3 of 3 results.