A305300 Ordinal transform of A305430, the smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over Q.
1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
binPol[n_, x_] := With[{bb = IntegerDigits[n, 2]}, bb.x^Range[Length[bb]-1, 0, -1]]; ip[n_] := If[IrreduciblePolynomialQ[binPol[n, x]], 1, 0]; A305430[n_] := Module[{k = n + 1}, While[ip[k] == 0, k++]; k]; b[_] = 0; a[n_] := a[n] = With[{t = A305430[n]}, b[t] = b[t]+1]; Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
-
PARI
A257000(n) = polisirreducible(Pol(binary(n))); A305429(n) = if(n<3,1, my(k=n-1); while(k>1 && !A257000(k),k--); (k)); A305300(n) = if((1==n)||(1==A257000(n)),1,1+(n-A305429(n)));
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A305430(n) = { my(k=1+n); while(!A257000(k),k++); (k); }; v305300 = ordinal_transform(vector(up_to,n,A305430(n))); A305300(n) = v305300[n];
Comments