A305491 a(n) = numerator(r(n)) where r(n) = (((1/2)*(sqrt(3) + 1))^n - ((1/2)*(sqrt(3) - 1))^n * cos(Pi*n))/sqrt(3).
0, 1, 1, 3, 2, 11, 15, 41, 7, 153, 209, 571, 195, 2131, 2911, 7953, 679, 29681, 40545, 110771, 37829, 413403, 564719, 1542841, 263445, 5757961, 7865521, 21489003, 7338631, 80198051, 109552575, 299303201, 12776743, 1117014753, 1525870529, 4168755811, 1423656585
Offset: 0
Keywords
Programs
-
Mathematica
Table[Numerator[Simplify[((1/2 (Sqrt[3] + 1))^x - (1/2 (Sqrt[3] - 1))^x Cos[Pi x])/Sqrt[3]]], {x, 0, 36}]
Formula
A recurrence for r(n) is given in A060723.
Comments