cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305563 Number of reducible integer partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 7, 15, 16, 27, 30, 56, 56, 100, 105, 157, 188, 287, 303, 470, 524, 724, 850, 1197, 1339, 1856, 2135, 2814, 3305, 4360, 4951, 6532, 7561, 9563, 11195, 14165, 16328, 20631, 23866, 29471, 34320, 42336, 48672, 59872, 69139, 83625, 96911, 117153
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Comments

A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1, ..., m_k) = 1 and the multiset {y_1, ..., y_k} is also reducible.

Examples

			The a(6) = 7 reducible integer partitions are (6), (51), (411), (321), (3111), (21111), (111111). Missing from this list are (42), (33), (222), (2211).
		

Crossrefs

Programs

  • Mathematica
    ptnredQ[y_]:=Or[Length[y]==1,And[GCD@@y==1,ptnredQ[Sort[Length/@Split[y],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],ptnredQ]],{n,20}]

A305566 Number of finite sets of relatively prime positive integers > 1 with least common multiple n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 10, 0, 2, 2, 0, 0, 10, 0, 10, 2, 2, 0, 44, 0, 2, 0, 10, 0, 84, 0, 0, 2, 2, 2, 122, 0, 2, 2, 44, 0, 84, 0, 10, 10, 2, 0, 184, 0, 10, 2, 10, 0, 44, 2, 44, 2, 2, 0, 1590, 0, 2, 10, 0, 2, 84, 0, 10, 2, 84, 0, 1156, 0, 2, 10, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
a(n) depends only on the prime signature of n.
If n is in A000961, a(n)=0.
If n is in A006881, a(n)=2. (End)
If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - Robert Israel, Jun 07 2018

Examples

			The a(12) = 10 sets:
{3,4},
{2,3,4}, {2,3,12}, {3,4,6}, {3,4,12},
{2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12},
{2,3,4,6,12}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) g(sort(map(t -> t[2],ifactors(n)[2]))) end proc:
    f(1):= 0:
    g:= proc(L) option remember;
      local nL, Cands, nC, Cons, i;
      nL:= nops(L);
      Cands:= [[]];
      for i from 1 to nL do
        Cands:= [seq(seq([op(s),t],t=0..L[i]),s=Cands)];
      od:
      Cands:= remove(t -> max(t)=0, Cands);
      nC:= nops(Cands);
      Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}),i=1..nL),
              seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)];
      h(Cons, {$1..nC})
    end proc:
    h:= proc(Cons, Cands)
      local t,i,Consi, Candsi;
      if Cons = [] then return 2^nops(Cands) fi;
      t:= 0;
      for i from 1 to nops(Cons[1]) do
        Consi:= map(proc(t) if member(Cons[1][i],t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]);
        if member({},Consi) then next fi;
        Candsi:= Cands minus Cons[1][1..i];
        t:= t + procname(Consi, Candsi)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 07 2018
  • Mathematica
    Table[Length[Select[Subsets[Rest[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A305564 Number of finite sets of relatively prime positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 4, 2, 7, 1, 32, 1, 7, 7, 8, 1, 32, 1, 32, 7, 7, 1, 136, 2, 7, 4, 32, 1, 193, 1, 16, 7, 7, 7, 322, 1, 7, 7, 136, 1, 193, 1, 32, 32, 7, 1, 560, 2, 32, 7, 32, 1, 136, 7, 136, 7, 7, 1, 3464, 1, 7, 32, 32, 7, 193, 1, 32, 7, 193, 1, 2852, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The a(6) = 7 sets are {1,6}, {2,3}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Rest[Subsets[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A305567 Irregular triangle where T(n,k) is the number of finite sets of positive integers with least common multiple n and greatest common divisor k, where k runs over all divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 1, 1, 1, 1, 1, 32, 7, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 8, 4, 2, 1, 1, 1, 1, 32, 2, 7, 1, 1, 1, 1, 1, 32, 7, 1, 2, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 1, 1, 136, 32, 4, 7, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			Triangle begins:
   1
   1  1
   1  1
   2  1  1
   1  1
   7  1  1  1
   1  1
   4  2  1  1
   2  1  1
   7  1  1  1
   1  1
  32  7  2  1  1  1
   1  1
   7  1  1  1
   7  1  1  1
   8  4  2  1  1
   1  1
  32  2  7  1  1  1
   1  1
  32  7  1  2  1  1
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],And[GCD@@#==k,LCM@@#==n]&]],{n,30},{k,Divisors[n]}]
Showing 1-4 of 4 results.