A305566 Number of finite sets of relatively prime positive integers > 1 with least common multiple n.
0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 10, 0, 2, 2, 0, 0, 10, 0, 10, 2, 2, 0, 44, 0, 2, 0, 10, 0, 84, 0, 0, 2, 2, 2, 122, 0, 2, 2, 44, 0, 84, 0, 10, 10, 2, 0, 184, 0, 10, 2, 10, 0, 44, 2, 44, 2, 2, 0, 1590, 0, 2, 10, 0, 2, 84, 0, 10, 2, 84, 0, 1156, 0, 2, 10, 10, 2
Offset: 1
Keywords
Examples
The a(12) = 10 sets: {3,4}, {2,3,4}, {2,3,12}, {3,4,6}, {3,4,12}, {2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12}, {2,3,4,6,12}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) g(sort(map(t -> t[2],ifactors(n)[2]))) end proc: f(1):= 0: g:= proc(L) option remember; local nL, Cands, nC, Cons, i; nL:= nops(L); Cands:= [[]]; for i from 1 to nL do Cands:= [seq(seq([op(s),t],t=0..L[i]),s=Cands)]; od: Cands:= remove(t -> max(t)=0, Cands); nC:= nops(Cands); Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}),i=1..nL), seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)]; h(Cons, {$1..nC}) end proc: h:= proc(Cons, Cands) local t,i,Consi, Candsi; if Cons = [] then return 2^nops(Cands) fi; t:= 0; for i from 1 to nops(Cons[1]) do Consi:= map(proc(t) if member(Cons[1][i],t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]); if member({},Consi) then next fi; Candsi:= Cands minus Cons[1][1..i]; t:= t + procname(Consi, Candsi) od; t end proc: map(f, [$1..100]); # Robert Israel, Jun 07 2018
-
Mathematica
Table[Length[Select[Subsets[Rest[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]
Comments