A305575 List points (x,y) having integer coordinates, sorted first by radial coordinate r and in case of ties, by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.
0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, -2, -2, 2, 3, 0, -3, 0, 3, 1, -1, -3, -3, -1, 1, 3, 3, 2, -2, -3, -3, -2, 2, 3, 4, 0, -4, 0, 4, 1, -1, -4, -4, -1, 1, 4, 3, -3, -3, 3, 4, 2, -2, -4, -4, -2, 2, 4, 5, 4, 3, 0, -3, -4, -5, -4, -3, 0, 3, 4, 5, 1, -1
Offset: 0
Examples
The first points (listing [polar angle phi,x,y]) are: r^2 0: [0.0*Pi,0,0]; 1: [0.0*Pi,1,0], [0.5*Pi,0,1], [1.0*Pi,-1,0], [1.5*Pi,0,-1]; 2: [0.25*Pi,1,1], [0.75*Pi,-1,1], [1.25*Pi,-1,-1], [1.75*Pi,1,-1]; 4: [0.0*Pi,2,0], [0.5*Pi,0,2], [1.0*Pi,-2,0], [1.5*Pi,0,-2]; 5: [0.148*Pi,2,1], [0.352*Pi,1,2], [0.648*Pi,-1,2], [0.852*Pi,-2,1], [1.148*Pi,-2,-1], [1.352*Pi,-1,-2], [1.648*Pi,1,-2], [1.852*Pi,2,-1]; 8: [0.25*Pi,2,2], [0.75*Pi,-2,2], [1.25*Pi,-2,-2], [1.75*Pi,2,-2].
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..17664 (covering range r <= 75).
- Hugo Pfoertner, Illustration of A305576 vs A305575.
- Rainer Rosenthal, Coloured Circular Visualization of Spiral [A305575,A305576]
Crossrefs
Programs
-
PARI
atan2(y,x)=if(x>0,atan(y/x),if(x==0,if(y>0,Pi/2,-Pi/2),if(y>=0,atan(y/x)+Pi,atan(y/x)-Pi))); angle(x,y)=(atan2(y,x)+2*Pi)%(2*Pi); {a004018(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; xyselect=1; \\ change to 2 for A305576 print1(0,", ");for(s=1,25,my(r=a004018(s));if(r>0,my(v=matrix(r,3),w=vector(r),m=sqrtint(s),L=0);for(i=-m,m,my(k=s-i^2,kk);if(k==0,v[L++,1]=i;v[L,2]=0;v[L,3]=angle(i,0),if(issquare(k),kk=sqrtint(k);forstep(j=-kk,kk,kk+kk,v[L++,1]=i;v[L,2]=j;v[L,3]=angle(i,j)))));p=vecsort(v[,3],,1);for(k=1,L,w[k]=v[p[k],xyselect]);for(k=1,L,print1(w[k],", ")))); \\ Hugo Pfoertner, May 12 2019
Comments