cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305602 G.f. A(x) satisfies: A(x) = 1 + x*[d/dx 1/(1 - x*A(x)^2)].

Original entry on oeis.org

1, 1, 6, 54, 628, 8760, 140904, 2552151, 51243864, 1127982321, 26993774100, 697703846499, 19372450060296, 575205186725962, 18191422973198622, 610655961723782310, 21689599103526363600, 812832263931582168447, 32057155649057309677062, 1327393477257351399000744, 57581802198755959140129600
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 54*x^3 + 628*x^4 + 8760*x^5 + 140904*x^6 + 2552151*x^7 + 51243864*x^8 + 1127982321*x^9 + 26993774100*x^10 + ...
such that A(x) = 1 + x*[d/dx 1/(1 - x*A(x)^2)].
RELATED SERIES.
A(x)^2 = 1 + 2*x + 13*x^2 + 120*x^3 + 1400*x^4 + 19424*x^5 + 309780*x^6 + 5559054*x^7 + 110623342*x^8 + 2415298374*x^9 + 57387784542*x^10 + ...
1/(1 - x*A(x)^2) = 1 + x + 3*x^2 + 18*x^3 + 157*x^4 + 1752*x^5 + 23484*x^6 + 364593*x^7 + 6405483*x^8 + 125331369*x^9 + 2699377410*x^10 + ...
exp( Integral A(x)^2 dx ) = 1 + x + 3*x^2/2! + 33*x^3/3! + 849*x^4/4! + 38061*x^5/5! + 2575611*x^6/6! + 242377533*x^7/7! + 30085188993*x^8/8! + ...
A'(x)/A(x) = 1 + 11*x + 145*x^2 + 2247*x^3 + 39461*x^4 + 768983*x^5 + 16409646*x^6 + 380013063*x^7 + 9487631035*x^8 + 254076973011*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(1/(1-x*A^2+x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)*intformal(Ser(A)^2) ) * ((m-1) + 1 - Ser(A)) )[m] ); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

O.g.f. A(x) satisfies:
(1) [x^n] exp( n * Integral A(x)^2 dx ) * (n + 1 - A(x)) = 0 for n > 0.
(2) A(x) = 1 + x*A(x)*(A(x) + 2*x*A'(x))/(1 - x*A(x)^2)^2.
a(n) ~ c * 2^n * n^(3/2) * n!, where c = 0.26934871195193907483980578... - Vaclav Kotesovec, Oct 06 2020

A305603 G.f. A(x) satisfies: A(x) = 1 + x*[d/dx 1/(1 - x*A(x)^3)].

Original entry on oeis.org

1, 1, 8, 102, 1712, 34785, 819384, 21810124, 645122272, 20957720148, 741260263600, 28350052179438, 1165931175542064, 51320048879474206, 2407857124657086480, 119990501174741855400, 6330579163195128292800, 352584892981590315935084, 20675941712941698695206368, 1273517057922072215818491064, 82210136955409063394289646720
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 102*x^3 + 1712*x^4 + 34785*x^5 + 819384*x^6 + 21810124*x^7 + 645122272*x^8 + 20957720148*x^9 + 741260263600*x^10 + ...
such that A(x) = 1 + x*[d/dx 1/(1 - x*A(x)^3)].
RELATED SERIES.
A(x)^3 = 1 + 3*x + 27*x^2 + 355*x^3 + 5964*x^4 + 120021*x^5 + 2790794*x^6 + 73301427*x^7 + 2141393220*x^8 + 68800518492*x^9 + ...
1/(1 - x*A(x)^3) = 1 + x + 4*x^2 + 34*x^3 + 428*x^4 + 6957*x^5 + 136564*x^6 + 3115732*x^7 + 80640284*x^8 + 2328635572*x^9 + ...
A'(x)/A(x) = 1 + 15*x + 283*x^2 + 6343*x^3 + 162076*x^4 + 4614153*x^5 + 144287466*x^6 + 4908441479*x^7 + 180383821348*x^8 + 7122692545660*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(1/(1-x*A^3+x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)*intformal(Ser(A)^3) ) * ((m-1) + 1 - Ser(A)) )[m] ); A[n+1]}
    for(n=0, 25, print1(a(n), ", "))

Formula

O.g.f. A(x) satisfies:
(1) [x^n] exp( n * Integral A(x)^3 dx ) * (n + 1 - A(x)) = 0 for n > 0.
(2) A(x) = 1 + x*A(x)^2*(A(x) + 3*x*A'(x))/(1 - x*A(x)^3)^2.
a(n) ~ c * 3^n * n^(4/3) * n!, where c = 0.1925904251831569484470022... - Vaclav Kotesovec, Oct 06 2020
Showing 1-2 of 2 results.