cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305605 G.f. A(x) satisfies: [x^k] A(x) / (1-x)^n = 0 for k = n*(n+1)/2 + 1 through k = (n+1)*(n+2)/2 for n >= 0.

Original entry on oeis.org

1, 0, -1, 0, -2, 2, 0, -7, 14, -7, 0, -37, 111, -111, 37, 0, -268, 1072, -1608, 1072, -268, 0, -2496, 12480, -24960, 24960, -12480, 2496, 0, -28612, 171672, -429180, 572240, -429180, 171672, -28612, 0, -391189, 2738323, -8214969, 13691615, -13691615, 8214969, -2738323, 391189, 0, -6230646, 49845168, -174458088, 348916176, -436145220, 348916176, -174458088, 49845168, -6230646, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2018

Keywords

Examples

			G.f.: A(x) = 1 - x^2 - 2*x^4 + 2*x^5 - 7*x^7 + 14*x^8 - 7*x^9 - 37*x^11 + 111*x^12 - 111*x^13 + 37*x^14 - 268*x^16 + 1072*x^17 - 1608*x^18 + 1072*x^19 - 268*x^20 - 2496*x^22 + 12480*x^23 - 24960*x^24 + 24960*x^25 - 12480*x^26 + 2496*x^27 - 28612*x^29 + 171672*x^30 + ...
The table of coefficients of x^k in A(x) / (1-x)^n, for n >= 0, begins:
[1, 0, -1,  0,  -2,   2,   0,   -7,  14,    -7,    0, -37, 111,-111,   37, ...];
[1, 1,  0,  0,  -2,   0,   0,   -7,   7,     0,    0, -37,  74, -37,    0, ...];
[1, 2,  2,  2,   0,   0,   0,   -7,   0,     0,    0, -37,  37,   0,    0, ...];
[1, 3,  5,  7,   7,   7,   7,    0,   0,     0,    0, -37,   0,   0,    0, ...];
[1, 4,  9, 16,  23,  30,  37,   37,  37,    37,   37,   0,   0,   0,    0, ...];
[1, 5, 14, 30,  53,  83, 120,  157,  194,  231,  268, 268, 268, 268,  268, ...];
[1, 6, 20, 50, 103, 186, 306,  463,  657,  888, 1156,1424,1692,1960, 2228, ...];
[1, 7, 27, 77, 180, 366, 672, 1135, 1792, 2680, 3836,5260,6952,8912,11140, ...]; ...
illustrating the occurrence of zeros.
Note that the initial terms of the rows in the above table forms the rows of irregular triangle A127496.
TRIANGULAR FORM.
This sequence may be arranged into a triangle like so:
1,
0, -1,
0, -2, 2,
0, -7, 14, -7,
0, -37, 111, -111, 37,
0, -268, 1072, -1608, 1072, -268,
0, -2496, 12480, -24960, 24960, -12480, 2496,
0, -28612, 171672, -429180, 572240, -429180, 171672, -28612,
...
in which the g.f. of the rows equal -x * A107877(n) * (1-x)^(n-1) for n > 0.
		

Crossrefs

Programs

  • PARI
    /* Informal code to generate terms */
    {A=[1, 0]; for(i=1, 465, A=concat(A, 0); m=floor(sqrt(2*#A-2) + 1/2); A[#A] = -polcoeff( Ser(A)/(1-x +x*O(x^#A))^(m-1), #A-1) ; print1(#A, ", ")); A}
    /* Show that the definition is satisfied: */
    for(n=0, sqrtint(2*#A)-1, print1(n": "); for(k=n*(n+1)/2+1, (n+1)*(n+2)/2, print1(polcoeff( Ser(A)/(1-x +x*O(x^#A))^n , k), ", ")); print(""))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies:
(1) A(x) = 1 - x*Sum_{n>=1} A107877(n) * x^(n*(n+1)/2) * (1-x)^(n-1).
(2) [x^k] A(x) / (1-x)^n = 0 for k = n*(n+1)/2 + 1 through (n+1)*(n+2)/2, n >= 0.
(3) [x^k] A(x) / (1-x)^n = A107877(n) for k = n*(n-1)/2 through n*(n+1)/2, n >= 0.
(4) [x^k] A(x) / (1-x)^n = A127496(n,k) for k = 0..n*(n+1)/2 for n >= 0.
(5) [x^n] A(x) / (1-x)^n = A127497(n) for n >= 0.
FORMULAS INVOLVING TERMS.
a(n*(n+1)/2) = 0 for n >= 1.
a(n*(n-1)/2) = (-1)^n * A107877(n) for n >= 0.
a(n*(n+1)/2 + 1) = -A107877(n) for n >= 0.
a(n) = [x^n] (1+x)^n * G(x) where G(x) is the g.f. of A305601, which is the inverse binomial transform of this sequence.