A305611 Number of distinct positive subset-sums of the multiset of prime factors of n.
0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 7, 1, 5, 3, 6, 1, 10, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 10, 3, 3
Offset: 1
Keywords
Examples
The a(12) = 5 positive subset-sums of {2, 2, 3} are 2, 3, 4, 5, and 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[p,{k}]]]]]],{n,100}]
-
PARI
up_to = 65537; A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414. v001414 = vector(up_to,n,A001414(n)); A305611(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v001414[d]), mapput(m,s,s); k++)); (k-1); }; \\ Antti Karttunen, Jun 13 2018
-
Python
from sympy import factorint from sympy.utilities.iterables import multiset_combinations def A305611(n): fs = factorint(n) return len(set(sum(d) for i in range(1,sum(fs.values())+1) for d in multiset_combinations(fs,i))) # Chai Wah Wu, Aug 23 2021
Comments