A305616 Near 2-hyperperfect numbers: numbers k such that sigma(k) - 3*k/2 - 1/2 is a proper divisor of k.
15, 63, 147, 171, 207, 627, 663, 1023, 1647, 1971, 2975, 6399, 18063, 19359, 27639, 40215, 48895, 58563, 78819, 95511, 114231, 133595, 134871, 145915, 147455, 163539, 168507, 172287, 188067, 529983, 680859, 795639, 1207359, 1238571, 1553499, 1588491, 2049219
Offset: 1
Keywords
Examples
15 is in the sequence since sigma(15) = 24 and 24 - 3*15/2 - 1/2 = 1 is a proper divisor of 15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..70
- Bhabesh Das and Helen K. Saikia, Identities for Near and Deficient Hyperperfect Numbers, Indian Journal in Number Theory, Vol. 3 (2016), pp. 124-134.
Programs
-
Mathematica
aQ[n_] := Module[{d=DivisorSigma[1, n]-3n/2-1/2}, d>0 && d!=n && IntegerQ[d] && Divisible[n,d]]; Select[Range[1000000], aQ]
-
PARI
isok(n) = (n % 2) && (k = sigma(n) - (3*n+1)/2) && (k>0) && !(n % k) && (k != n); \\ Michel Marcus, Jun 07 2018
Comments