cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305625 Number of chiral pairs of rows of n colors with exactly 5 different colors.

Original entry on oeis.org

0, 0, 0, 0, 60, 900, 8400, 63000, 417000, 2551440, 14802900, 82763100, 450501660, 2404493700, 12645952200, 65771370000, 339164682000, 1737485315640, 8855354531100, 44952362878500, 227475739300260, 1148269299919500, 5785013208282000, 29100046926951000, 146201097996135000, 733811769167043840, 3680292427100043300, 18446421887430345900, 92412024657725026860, 462780012983867889300, 2316780309783100387800
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			For a(5) = 60, the chiral pairs are the 5! = 120 permutations of ABCDE, each paired with its reverse.
		

Crossrefs

Fifth column of A305622.
A056456(n) is number of achiral rows of n colors with exactly 5 different colors.

Programs

  • Mathematica
    k=5; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
  • PARI
    a(n) = 60*(stirling(n, 5, 2) - stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=5 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A001118(n) - A056456(n)) / 2.
a(n) = A001118(n) - A056312(n) = A056312(n) - A056456(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=5 colors used.