A305626 Number of chiral pairs of rows of n colors with exactly 6 different colors.
0, 0, 0, 0, 0, 360, 7560, 95760, 952560, 8217720, 64614960, 476514360, 3355664760, 22837086720, 151449482520, 984573465120, 6302069010720, 39847409421480, 249509368422720, 1550188394120520, 9570844541994120, 58789922099665680, 359629148397511080, 2192484972513916080, 13329510116645202480, 80854267307329446840, 489528474458978944080, 2959252601445086408280, 17866194139995100525080, 107751636988750077294240, 649286502010403671101240
Offset: 1
Examples
For a(6) = 360, the chiral pairs are the 6! = 720 permutations of ABCDEF, each paired with its reverse.
Crossrefs
Programs
-
Mathematica
k=6; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
PARI
a(n) = 360*(stirling(n, 6, 2) - stirling(ceil(n/2), 6, 2)); \\ Altug Alkan, Sep 26 2018
Formula
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=6 colors used and where S2(n,k) is the Stirling subset number A008277.
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=6 colors used.
Comments