A305630 Expansion of Product_{r = 1 or not a perfect power} 1/(1 - x^r).
1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 36, 48, 61, 78, 99, 124, 156, 195, 241, 299, 367, 450, 549, 670, 811, 982, 1183, 1422, 1704, 2040, 2431, 2894, 3435, 4070, 4811, 5679, 6684, 7858, 9217, 10797, 12623, 14738, 17174, 19988, 23225, 26951, 31227, 36141, 41759
Offset: 0
Keywords
Examples
The a(5) = 6 integer partitions whose parts are 1's or not perfect powers are (5), (32), (311), (221), (2111), (11111).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
q:= n-> is(n=1 or 1=igcd(map(i-> i[2], ifactors(n)[2])[])): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(q(d), d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 07 2018
-
Mathematica
nn=20; radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1]; ser=Product[1/(1-x^p),{p,Select[Range[nn],radQ]}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Comments