A305631 Expansion of Product_{r not a perfect power} 1/(1 - x^r).
1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 7, 8, 12, 13, 17, 21, 25, 32, 39, 46, 58, 68, 83, 99, 121, 141, 171, 201, 239, 282, 336, 391, 463, 541, 635, 741, 868, 1005, 1174, 1359, 1580, 1826, 2115, 2436, 2814, 3237, 3726, 4276, 4914, 5618, 6445, 7359, 8414, 9594, 10947, 12453
Offset: 0
Keywords
Examples
The a(9) = 5 integer partitions whose parts are not perfect powers are (72), (63), (522), (333), (3222).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
q:= n-> is(1=igcd(map(i-> i[2], ifactors(n)[2])[])): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(q(d), d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 07 2018
-
Mathematica
nn=100; wadQ[n_]:=n>1&&GCD@@FactorInteger[n][[All,2]]==1; ser=Product[1/(1-x^p),{p,Select[Range[nn],wadQ]}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Comments