A305656 Integers m that satisfy tau(m) + omega(m) = #({phi(x) = m}).
2, 4, 8, 16, 24, 32, 64, 128, 256, 320, 512, 1024, 2048, 3712, 4096, 7168, 8192, 10512, 16192, 16384, 32768, 33024, 37888, 41728, 49280, 51552, 54528, 57280, 62592, 65536, 66432, 67968, 68832, 69792, 81600, 84352, 87696, 91968, 92016, 93888, 94720, 124128, 129888, 131072
Offset: 1
Keywords
Examples
2 is a term because tau(2) = 2, omega(2) = 1, and #({phi(x) = 2}) = 3. 24 is a term because tau(24) = 8, omega(24) = 2, and #({phi(x) = 24}) = 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Max Alekseyev, PARI scripts for various problems (see invphi.gp there).
Programs
-
Maple
filter:= proc(n) uses numtheory; tau(n)+nops(factorset(n)) = nops(invphi(n)) end proc: select(filter, [seq(i,i=2..10^5,2)]); # Robert Israel, Oct 28 2021
-
Mathematica
Block[{nn = 10^5, s}, s = Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]; Select[Range@ nn, DivisorSigma[0, #] + PrimeNu[#] == s[[#]] &] ] (* Michael De Vlieger, Jul 21 2018 *)
-
PARI
isok(m) = numdiv(m) + omega(m) == #invphi(m); \\ Michel Marcus, Jun 08 2018
Extensions
More terms from Michel Marcus, Jun 08 2018
Comments