cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A304020 Coefficients of (q*(j(q)-744))^(1/4) where j(q) is the elliptic modular invariant.

Original entry on oeis.org

1, 0, 49221, 5373440, -3417985269, -788396806656, 342234419865236, 132462307415526912, -36238724753334630039, -22802599804762047656960, 3430044089325166785294348, 3917150794938668128412249088, -180732068045239143713224620097
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2018

Keywords

Crossrefs

(q*(j(q)-744))^(k/4): A305699 (k=-4), A305698 (k=-2), A305696 (k=-1), this sequence (k=1), A305697 (k=2).
Cf. A000521 (j), A014708 (j-744), A106203, A106205, A302407.

Programs

  • Mathematica
    CoefficientList[Series[((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x)^(1/4), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)

Formula

G.f.: Product_{k>0} (1 - x^k)^(-A302407(k)/4).

A305699 Coefficients of 1/(q*(j(q)-744)) where j(q) is the elliptic modular invariant.

Original entry on oeis.org

1, 0, -196884, -21493760, 37899009486, 8443309031424, -6829893232051144, -2454385780209696768, 1130962845597176786661, 621972524796731658731520, -164194903359722124902384028, -144508453392903668301846454272
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2018

Keywords

Crossrefs

(q*(j(q)-744))^(k/4): A305698 (k=-2), A305696 (k=-1), A304020 (k=1), A305697 (k=2).
Cf. A000521 (j), A014708 (j-744), A066395, A289417.

Programs

  • Mathematica
    CoefficientList[Series[1/((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)

A305696 Coefficients of (q*(j(q)-744))^(-1/4) where j(q) is the elliptic modular invariant.

Original entry on oeis.org

1, 0, -49221, -5373440, 5840692110, 1317368987136, -769081921703395, -285861152927176704, 99587019847435059600, 58472021328782000084480, -11456674101843809483255526, -11455351916487867258761894400, 892125673948866841204086469705
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2018

Keywords

Crossrefs

(q*(j(q)-744))^(k/4): A305699 (k=-4), A305698 (k=-2), this sequence (k=-1), A304020 (k=1), A305697 (k=2).
Cf. A000521 (j), A014708 (j-744), A289397, A289416, A302407.

Programs

  • Mathematica
    CoefficientList[Series[((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x)^(-1/4), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)

Formula

G.f.: Product_{k>0} (1 - x^k)^(A302407(k)/4).

A305697 Coefficients of (q*(j(q)-744))^(1/2) where j(q) is the elliptic modular invariant.

Original entry on oeis.org

1, 0, 98442, 10746880, -4413263697, -1047821432832, 376869391313174, 150580578862513152, -35577391320709928685, -23497935558209789278208, 2998297272257446799809386, 3754973355232751413790773248, -112875007087323495790855645044
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2018

Keywords

Crossrefs

(q*(j(q)-744))^(k/4): A305699 (k=-4), A305698 (k=-2), A305696 (k=-1), A304020 (k=1), this sequence (k=2).
Cf. A000521 (j), A014708 (j-744).

Programs

  • Mathematica
    CoefficientList[Series[((2^16 + x*QPochhammer[-1, x]^24)^3/(2*QPochhammer[-1, x])^24 - 744*x)^(1/2), {x, 0, 15}], x] (* Vaclav Kotesovec, Jun 09 2018 *)
Showing 1-4 of 4 results.