cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305810 Filter sequence for a(Sophie Germain primes > 3) = constant sequences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 5, 22, 23, 24, 25, 26, 5, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 5, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 5, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 5, 78, 79, 80, 81, 82, 5, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2018

Keywords

Comments

Filer sequence for all such sequences S, for which S(A005384(k)) = constant for all k >= 3.
Restricted growth sequence transform of the ordered pair [A305900(n), A305901(1+n)].
For all i, j:
a(i) = a(j) => A305900(i) = A305900(j),
a(i) = a(j) => A305901(1+i) = A305901(1+j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    A156660(n) = (isprime(n)&&isprime(2*n+1)); \\ From A156660
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    v156874 = partialsums(A156660, up_to);
    A156874(n) = v156874[n];
    A305810(n) = if(n<5,n,if(A156660(n),5,3+n-A156874(n)));

Formula

If n < 5, a(n) = n; for n >= 5, a(n) = 5 if A156660(n) == 1 [when n is in A005384[3..] = 5, 11, 23, 29, 41, 53, 83, 89, 113, ...], otherwise a(n) = 3+n-A156874(n).