cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305829 Factor n into distinct Fermi-Dirac primes (A050376), normalize by replacing every instance of the k-th Fermi-Dirac prime with k, then multiply everything together.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 6, 8, 5, 8, 9, 10, 6, 11, 12, 10, 7, 12, 6, 13, 8, 12, 15, 14, 8, 15, 9, 14, 10, 20, 18, 16, 11, 16, 12, 17, 10, 18, 21, 24, 12, 19, 18, 20, 13, 20, 24, 21, 12, 28, 15, 22, 14, 22, 24, 23, 15, 30, 27, 32, 14, 24, 30, 24, 20, 25
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. Then a(n) = s_1 * ... * s_k.
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Times@@(FDfactor[n]/.FDrules),{n,nn}]
  • PARI
    \\ here isfd is membership test for A050376.
    isfd(n)={my(e=isprimepower(n)); e && e == 1<Andrew Howroyd, Aug 02 2018