A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0
Examples
Triangle begins: 1; 4; 16, 1; 64, 8; 256, 48, 1; 1024, 256, 12; 4096, 1280, 96, 1; 16384, 6144, 640, 16; 65536, 28672, 3840, 160, 1; 262144, 131072, 21504, 1280, 20; 1048576, 589824, 114688, 8960, 240, 1; 4194304, 2621440, 589824, 57344, 2240, 24; 16777216, 11534336, 2949120, 344064, 17920, 336, 1; 67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.
Links
- Shara Lalo, Left justified triangle
- Shara Lalo, Skew diagonals in triangle A013611
Crossrefs
Programs
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
Formula
G.f.: 1 / (1 - 4*t*x - t^2).
Comments