A305835 Primes which oscillate from prime to composite under a cyclic shift of digits.
19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 1163, 1321, 1361, 1783, 1933, 1997, 2113, 2161, 2333, 2339, 2347, 2381, 2389, 2393, 2729, 2741, 2777, 2927, 2963, 2999, 3319, 3323, 3347, 3389, 3391, 3923, 4127, 4157, 4349, 4357, 4363, 4397, 4723, 4733, 4751, 4787, 4943, 4957, 4969, 4973, 4999
Offset: 1
Examples
n=1 N_0 = 19 (prime) N_1 = 91 (nonprime) N_2 = N_0 = 19 (prime) . . n=13 [left cyclic shift] N_0 = 1163 (prime) N_1 = 1631 (nonprime) N_2 = 6311 (prime) N_3 = 3116 (nonprime) N_4 = N_0 = 1163 (prime) . . n=13 [right cyclic shift] N_0 = 1163 (prime) N_1 = 3116 (nonprime) N_2 = 6311 (prime) N_3 = 1631 (nonprime) N_4 = N_0 = 1163 (prime)
Links
- Philip Mizzi, Table of n, a(n) for n = 1..101
Crossrefs
Cf. A286415 (provides the first terms only).
Programs
-
Mathematica
ok[n_] := Catch[Block[{d = IntegerDigits[n]}, If[Min[d] == 0 || OddQ[ Length[d]], Throw@ False]; Do[If[PrimeQ[ FromDigits@ RotateLeft[d, j]] == OddQ[j], Throw@ False], {j, Length[d]-1}]; True]]; Select[ Prime@ Range@ 670, ok] (* Giovanni Resta, Jun 12 2018 *)
-
PARI
ok(p)={my(k=logint(p,10)); k%2 && isprime(p) && vecmin(digits(p))>0 && !#select(i->isprime(p\10^i + p%10^i*10^(k+1-i))==i%2, [1..k])} \\ Andrew Howroyd, Jun 11 2018
Comments