cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305841 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A001970 (partitions of partitions).

Original entry on oeis.org

1, 3, 3, 8, 7, 14, 15, 30, 30, 49, 56, 91, 101, 150, 176, 261, 297, 415, 490, 676, 792, 1058, 1255, 1666, 1958, 2537, 3010, 3868, 4565, 5780, 6842, 8610, 10143, 12607, 14883, 18392, 21637, 26505, 31185, 38014, 44583, 53966, 63261, 76233, 89134, 106813, 124754
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2018

Keywords

Comments

Inverse weigh transform of A001970.

Examples

			(1 + x) * (1 + x^2)^3 * (1 + x^3)^3 * (1 + x^4)^8 * (1 + x^5)^7 * ... * (1 + x^n)^a(n) * ... = 1/((1 - x) * (1 - x^2)^2 * (1 - x^3)^3 * (1 - x^4)^5 * (1 - x^5)^7 * ... * (1 - x^k)^p(k) * ...).
		

Crossrefs

Programs

  • Mathematica
    nn = 40; f[x_] := Product[(1 + x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^k)^PartitionsP[k], {k, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

Formula

Product_{n>=1} (1 + x^n)^a(n) = Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) = number of partitions of k (A000041).