cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305867 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k-1)!!.

Original entry on oeis.org

1, 1, 4, 19, 130, 1120, 11960, 151595, 2230550, 37361755, 701873371, 14610774346, 333746628499, 8298025724194, 223049950124065, 6444634486214748, 199165237980655863, 6555102341516877027, 228905611339161301812, 8452656930719845696590, 329075775511339959533232, 13471099892869946627980017
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2018

Keywords

Comments

Euler transform of A001147.

Crossrefs

Programs

  • Maple
    N:= 25:
    S:=series(mul((1-x^k)^(-doublefactorial(2*k-1)),k=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Jun 12 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(2 k - 1)!!, {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2 d - 1)!!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001147(k).