A305876 a(n) = Fibbinary(2^n).
1, 2, 5, 16, 36, 84, 273, 648, 2114, 4757, 16516, 37161, 87045, 282896, 673924, 2184233, 5263877, 17107472, 38830244, 134554132, 303080705, 707272770, 2300725397, 5457925252, 17805431433, 42970665029, 139654661284, 314223120404, 1099646108737, 2474203744786
Offset: 0
Examples
a(6) = A003714(2^6) = A003714(64) = 273 = 100010001_2 because F(0+2) + F(4+2) + F(8+2) = 1 + 8 + 55 = 64, where 0, 4, 8 are the indices of 1 bits in 100010001_2. A014417(64) = 100010001 = A007088(273).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2306
Programs
-
Maple
F:= proc(n) F(n):= `if`(n<2, n, F(n-1)+F(n-2)) end: b:= proc(n) local j; if n=0 then 0 else for j from 2 while F(j+1)<=n do od; b(n-F(j))+2^(j-2) fi end: a:= n-> b(2^n): seq(a(n), n=0..35);
-
Python
def A305876(n): m, tlist, s = 2**n, [1,2], 0 while tlist[-1]+tlist[-2] <= m: tlist.append(tlist[-1]+tlist[-2]) for d in tlist[::-1]: s *= 2 if d <= m: s += 1 m -= d return s # Chai Wah Wu, Jun 14 2018