cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305876 a(n) = Fibbinary(2^n).

Original entry on oeis.org

1, 2, 5, 16, 36, 84, 273, 648, 2114, 4757, 16516, 37161, 87045, 282896, 673924, 2184233, 5263877, 17107472, 38830244, 134554132, 303080705, 707272770, 2300725397, 5457925252, 17805431433, 42970665029, 139654661284, 314223120404, 1099646108737, 2474203744786
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2018

Keywords

Examples

			a(6) = A003714(2^6) = A003714(64) = 273 = 100010001_2 because F(0+2) + F(4+2) + F(8+2) = 1 + 8 + 55 = 64, where 0, 4, 8 are the indices of 1 bits in 100010001_2.  A014417(64) = 100010001 = A007088(273).
		

Crossrefs

Programs

  • Maple
    F:= proc(n) F(n):= `if`(n<2, n, F(n-1)+F(n-2)) end:
    b:= proc(n) local j;
          if n=0 then 0
        else for j from 2 while F(j+1)<=n do od;
             b(n-F(j))+2^(j-2)
          fi
        end:
    a:= n-> b(2^n):
    seq(a(n), n=0..35);
  • Python
    def A305876(n):
        m, tlist, s = 2**n, [1,2], 0
        while tlist[-1]+tlist[-2] <= m:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= m:
                s += 1
                m -= d
        return s # Chai Wah Wu, Jun 14 2018

Formula

a(n) = A003714(2^n).
A014417(2^n) = A007088(a(n)).