A305885 Zeroless composite numbers which become and remain prime under a complete cyclic shift of digits.
14, 16, 32, 34, 35, 38, 74, 76, 91, 92, 95, 98, 118, 119, 133, 176, 194, 316, 398, 712, 715, 731, 736, 772, 775, 778, 779, 793, 794, 914, 935, 973, 1118, 1195, 1312, 1336, 1774, 1937, 3112, 3199, 3337, 3379, 3394, 3772, 3992, 7132, 7198, 7318, 7376, 7771, 7912
Offset: 1
Examples
N_0 = 1118 (composite); N_1 = 1181 (prime); N_2 = 1811 (prime); N_3 = 8111 (prime); N_4 = N_0 = 1118 (composite).
Links
- Robert Israel, Table of n, a(n) for n = 1..121 (first 56 terms from Philip Mizzi)
- World of numbers, Circular prime
Programs
-
Maple
Q[1]:= [seq([i],i=1..9)]: for d from 2 to 7 do Q[d]:= map(t -> seq([i,op(t)],i=1..9),Q[d-1]) od: Res:= NULL: count:= 0: for d from 2 to 7 do for q in Q[d] do P[q]:= isprime(add(q[i]*10^(i-1),i=1..d)) od; for q in Q[d] do if (not P[q]) and andmap(t -> P[ListTools:-Rotate(q,t)],[$1..d-1]) then count:= count+1; Res:= Res, add(q[i]*10^(i-1),i=1..d); fi od od: Res; # Robert Israel, Jul 10 2018
-
Mathematica
Select[Range[11, 8000], Function[{k, d}, And[CompositeQ@ k, FreeQ[d, 0], AllTrue[Array[FromDigits@ RotateLeft[d, #] &, IntegerLength@ k - 1], PrimeQ]]] @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Jun 14 2018 *)
-
PARI
eva(n) = subst(Pol(n), x, 10) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v is(n) = my(d=digits(n), r=rot(d)); if(vecmin(d)==0, return(0), while(1, if(!ispseudoprime(eva(r)), return(0)); r=rot(r); if(r==d, return(1)))) forcomposite(c=1, 8000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Jul 10 2018
Comments