cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305898 Filter sequence combining prime signature of n (A046523) and similar signature (A284011) obtained when Stern polynomial B(n,x) is factored over Z.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 9, 4, 5, 6, 2, 10, 2, 11, 4, 4, 4, 12, 2, 4, 4, 8, 2, 10, 2, 6, 6, 4, 2, 13, 3, 14, 4, 6, 2, 8, 15, 8, 4, 4, 2, 16, 2, 4, 17, 18, 15, 10, 2, 6, 4, 10, 2, 19, 2, 4, 6, 6, 15, 10, 2, 13, 20, 4, 2, 16, 4, 4, 4, 8, 2, 16, 15, 6, 4, 4, 15, 21, 2, 6, 6, 22, 2, 10, 2, 8, 10
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A046523(n), A284011(n)].
For all i, j: a(i) = a(j) => A305892(i) = A305892(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
    A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A284011(n) = A284010(A260443(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux305898(n) = [A046523(n), A284011(n)];
    v305898 = rgs_transform(vector(up_to, n, Aux305898(n)));
    A305898(n) = v305898[n];

A331742 Lexicographically earliest infinite sequence such that a(i) = a(j) => A323901(i) = A323901(j) for all i, j.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 3, 4, 4, 1, 7, 5, 8, 3, 9, 6, 10, 2, 11, 3, 10, 4, 5, 4, 12, 1, 13, 7, 14, 5, 15, 8, 16, 3, 17, 9, 18, 6, 19, 10, 20, 2, 17, 11, 18, 3, 9, 10, 21, 4, 22, 5, 8, 4, 22, 12, 12, 1, 23, 13, 24, 7, 25, 14, 26, 5, 27, 15, 28, 8, 19, 16, 29, 3, 30, 17, 31, 9, 32, 18, 33, 6, 34, 19, 33, 10, 35, 20, 36, 2, 35, 17, 37, 11, 38, 18, 14, 3, 34
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Comments

Restricted growth sequence transform of function A323901(n) = A002487(A163511(n)).

Crossrefs

Programs

  • PARI
    \\ Needs also code from A323901.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v331742 = rgs_transform(vector(1+up_to, n, A323901(n-1)));
    A331742(n) = v331742[1+n];

Formula

a(2^n) = 1 for all n >= 0.
Showing 1-2 of 2 results.