A305898 Filter sequence combining prime signature of n (A046523) and similar signature (A284011) obtained when Stern polynomial B(n,x) is factored over Z.
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 9, 4, 5, 6, 2, 10, 2, 11, 4, 4, 4, 12, 2, 4, 4, 8, 2, 10, 2, 6, 6, 4, 2, 13, 3, 14, 4, 6, 2, 8, 15, 8, 4, 4, 2, 16, 2, 4, 17, 18, 15, 10, 2, 6, 4, 10, 2, 19, 2, 4, 6, 6, 15, 10, 2, 13, 20, 4, 2, 16, 4, 4, 4, 8, 2, 16, 15, 6, 4, 4, 15, 21, 2, 6, 6, 22, 2, 10, 2, 8, 10
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); }; A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); } A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); A284011(n) = A284010(A260443(n)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 Aux305898(n) = [A046523(n), A284011(n)]; v305898 = rgs_transform(vector(up_to, n, Aux305898(n))); A305898(n) = v305898[n];
Comments