cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305931 Powers of 3 having at least one digit '0' in their decimal representation.

Original entry on oeis.org

59049, 14348907, 43046721, 129140163, 387420489, 3486784401, 10460353203, 31381059609, 847288609443, 68630377364883, 205891132094649, 1853020188851841, 5559060566555523, 50031545098999707, 150094635296999121, 450283905890997363, 1350851717672992089, 4052555153018976267, 12157665459056928801
Offset: 1

Views

Author

M. F. Hasler, Jun 15 2018

Keywords

Comments

The analog of A298607 for 3^k instead of 2^k.
The complement A238939 is conjectured to have only 23 elements, the largest being 3^68. Thus, all larger powers of 3 are (conjectured to be) in this sequence. Each of the subsequences "powers of 3 with exactly n digits 0" is conjectured to be finite. Provided there is at least one such element for each n >= 0, this leads to a partition of the integers, given in A305933.

Crossrefs

Cf. A030700 = row 0 of A305933: decimal expansion of 3^n contains no zeros.
Complement (within A000244: powers of 3) of A238939: powers of 3 with no digit '0' in their decimal expansion.
Analog of A298607: powers of 2 with the digit '0' in their decimal expansion.
The first six terms coincide with the finite sequence A305934: powers of 3 having exactly one digit 0.

Programs

  • Mathematica
    Select[3^Range[0,40],DigitCount[#,10,0]>0&] (* Harvey P. Dale, May 30 2020 *)
  • PARI
    for(k=0,69, vecmin(digits(3^k))|| print1(3^k","))
    
  • PARI
    select( t->!vecmin(digits(t)), apply( k->3^k, [0..40]))