A305937 Number of partitions such that the least positive integer which is not a part of the partition is prime.
0, 1, 1, 2, 3, 5, 6, 10, 13, 19, 26, 36, 47, 65, 84, 111, 144, 188, 239, 309, 390, 497, 624, 786, 978, 1224, 1513, 1875, 2306, 2839, 3469, 4246, 5162, 6279, 7600, 9196, 11077, 13344, 16006, 19191, 22934, 27387, 32602, 38788, 46015, 54547, 64504, 76209, 89835
Offset: 0
Keywords
Examples
For n=3 there are three unrestricted partitions: 3, 2+1, and 1+1+1. The least positive integer not in the first partition is 1. One is not a prime so the first partition is not counted. For the second partition the smallest missing positive integer is 3, which is prime. For the third partition the missing number is 2, which is prime. So a(3)=2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A000040.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t or isprime(i), 1, 0), `if`(i>n, 0, `if`(t or isprime(i), b(n, i+1, true), 0)+ add(b(n-i*j, i+1, t), j=1..n/i))) end: a:= n-> b(n, 1, false): seq(a(n), n=0..70); # Alois P. Heinz, Jun 16 2018
-
Mathematica
nend = 30; For[n = 1, n <= nend, n++, sum[n] = 0; partition = {n}; For[i = 1, i <= PartitionsP[n], i++, partition = NextPartition[partition]; mex = Min[Complement[Range[n + 1], partition]]; If [PrimeQ[mex], sum[n]++;] ] ]; Table[sum[i], {i, 1, nend}]