A071531 Smallest exponent r such that n^r contains at least one zero digit (in base 10).
10, 10, 5, 8, 9, 4, 4, 5, 1, 5, 4, 6, 7, 4, 3, 7, 4, 4, 1, 5, 3, 6, 6, 4, 6, 5, 5, 4, 1, 6, 2, 2, 3, 4, 5, 3, 4, 5, 1, 5, 3, 3, 4, 2, 5, 2, 2, 2, 1, 2, 2, 2, 4, 2, 5, 4, 6, 3, 1, 5, 6, 3, 2, 4, 6, 3, 9, 3, 1, 2, 6, 3, 3, 4, 8, 4, 2, 3, 1, 4, 5, 5, 2, 4, 3, 3, 6, 3, 1, 5, 5, 3, 3, 2, 7, 2, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2
Examples
a(4)=5 because 4^1=4, 4^2=16, 4^3=64, 4^4=256, 4^5=1024 (has zero digit).
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- OEIS Wiki, Zeroless powers (2014).
Crossrefs
Programs
-
Maple
f:= proc(n) local j; for j from 1 do if has(convert(n^j,base,10),0) then return j fi od: end proc: seq(f(n),n=2..100); # Robert Israel, Jan 15 2015
-
Mathematica
zd[n_]:=Module[{r=1},While[DigitCount[n^r,10,0]==0,r++];r]; Array[zd,110,2] (* Harvey P. Dale, Apr 15 2012 *)
-
PARI
A071531(n)=for(k=1, oo, vecmin(digits(n^k))||return(k)) \\ M. F. Hasler, Jun 23 2018
-
Python
def a(n): r, p = 1, n while 1: if "0" in str(p): return r r += 1 p *= n [a(n) for n in range(2, 100)] # Tim Peters, May 19 2005
Formula
a(n) >= 1 with equality iff n is in A011540 \ {0} = {10, 20, ..., 100, 101, ...}. - M. F. Hasler, Jun 23 2018
Comments