cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 15 2018

Keywords

Comments

A(n,k) counts strings [s_1, ..., s_n] with 1 = s_1 <= s_i <= k + max_{j

Examples

			A(0,2) = 1: the empty string.
A(1,2) = 1: 1.
A(2,2) = 3: 11, 12, 13.
A(3,2) = 12: 111, 112, 113, 121, 122, 123, 124, 131, 132, 133, 134, 135.
Square array A(n,k) begins:
  1,   1,     1,      1,      1,       1,       1,       1, ...
  1,   1,     1,      1,      1,       1,       1,       1, ...
  1,   2,     3,      4,      5,       6,       7,       8, ...
  1,   5,    12,     22,     35,      51,      70,      92, ...
  1,  15,    59,    150,    305,     541,     875,    1324, ...
  1,  52,   339,   1200,   3125,    6756,   12887,   22464, ...
  1, 203,  2210,  10922,  36479,   96205,  216552,  435044, ...
  1, 877, 16033, 110844, 475295, 1530025, 4065775, 9416240, ...
		

Crossrefs

Main diagonal gives: A305963.
Antidiagonal sums give: A305971.
Cf. A306024.

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 1,
          add(b(n-1, k, max(m, j)), j=1..m+k))
        end:
    A:= (n, k)-> b(n, k, 1-k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= (n, k)-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add(
                  (exp(j*x)-1)/j, j=1..k)), x, n), x, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, m_] := b[n, k, m] = If[n==0, 1, Sum[b[n-1, k, Max[m, j]], {j, 1, m+k}]];
    A[n_, k_] := b[n, k, 1-k];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)

Formula

A(n,k) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..k} (exp(j*x)-1)/j) for n>0, A(0,k) = 1.

A306025 Number of length-n restricted growth strings (RGS) with growth <= n and first element in [n].

Original entry on oeis.org

1, 1, 7, 95, 2096, 67354, 2943277, 166862583, 11858631472, 1029154793775, 106837050484924, 13046411412001307, 1848336205780389404, 300289842081446066173, 55393980428260038660617, 11503469972529028999979343, 2669299049110696359069533376
Offset: 0

Author

Alois P. Heinz, Jun 17 2018

Keywords

Examples

			a(0) = 1: the empty string.
a(1) = 1: 1.
a(2) = 7: 11, 12, 13, 21, 22, 23, 24.
		

Crossrefs

Main diagonal of A306024.
Cf. A305963.

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 1,
          add(b(n-1, k, max(m, j)), j=1..m+k))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);
    # second Maple program:
    a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..n)), x, n+1), x, n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1,
       Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 07 2022, after Alois P. Heinz *)

Formula

a(n) = n! * [x^n] exp(Sum_{j=1..n} (exp(j*x)-1)/j).
a(n) = A306024(n,n).
Showing 1-2 of 2 results.