A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306025 Number of length-n restricted growth strings (RGS) with growth <= n and first element in [n].
1, 1, 7, 95, 2096, 67354, 2943277, 166862583, 11858631472, 1029154793775, 106837050484924, 13046411412001307, 1848336205780389404, 300289842081446066173, 55393980428260038660617, 11503469972529028999979343, 2669299049110696359069533376
Offset: 0
Keywords
Examples
a(0) = 1: the empty string. a(1) = 1: 1. a(2) = 7: 11, 12, 13, 21, 22, 23, 24.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..265
Programs
-
Maple
b:= proc(n, k, m) option remember; `if`(n=0, 1, add(b(n-1, k, max(m, j)), j=1..m+k)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..20); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..n)), x, n+1), x, n): seq(a(n), n=0..20);
-
Mathematica
b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1, Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 07 2022, after Alois P. Heinz *)
Formula
a(n) = n! * [x^n] exp(Sum_{j=1..n} (exp(j*x)-1)/j).
a(n) = A306024(n,n).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula