A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306034 Number of length-n restricted growth strings (RGS) with growth <= ten and first element in [10].
1, 10, 155, 3035, 70500, 1877083, 56019305, 1844512570, 66219313755, 2568394851483, 106837050484924, 4737487302902715, 222819378516865825, 11068264704881204698, 578536038611685742843, 31718762374848254987147, 1818933941414434687198820
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+10)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..10)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..10} (exp(j*x)-1)/j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula