A305975 Filter sequence: All prime powers p^k, k >= 1, are allotted to distinct equivalence classes according to their exponent k, while all other numbers occur in singular equivalence classes of their own.
1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 3, 16, 5, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 3, 32, 33, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 53, 54, 2, 55, 10, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 67, 68, 2, 69, 70, 71
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
PARI
up_to = 100000; partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); } rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; v065515 = partialsums(n -> (omega(n)<=1), up_to); A065515(n) = v065515[n]; A085970(n) = (n - A065515(n)); A305974(n) = if(1==n,n,my(e = isprimepower(n)); if(e,-e,1+A085970(n))); v305975 = rgs_transform(vector(up_to,n,A305974(n))); A305975(n) = v305975[n];
Formula
a(prime) = 2, a(prime^2) = 3, a(prime^3) = 5, a(prime^4) = 10, a(prime^5) = 19.
Comments