cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305810 Filter sequence for a(Sophie Germain primes > 3) = constant sequences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 5, 22, 23, 24, 25, 26, 5, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 5, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 5, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 5, 78, 79, 80, 81, 82, 5, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2018

Keywords

Comments

Filer sequence for all such sequences S, for which S(A005384(k)) = constant for all k >= 3.
Restricted growth sequence transform of the ordered pair [A305900(n), A305901(1+n)].
For all i, j:
a(i) = a(j) => A305900(i) = A305900(j),
a(i) = a(j) => A305901(1+i) = A305901(1+j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    A156660(n) = (isprime(n)&&isprime(2*n+1)); \\ From A156660
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    v156874 = partialsums(A156660, up_to);
    A156874(n) = v156874[n];
    A305810(n) = if(n<5,n,if(A156660(n),5,3+n-A156874(n)));

Formula

If n < 5, a(n) = n; for n >= 5, a(n) = 5 if A156660(n) == 1 [when n is in A005384[3..] = 5, 11, 23, 29, 41, 53, 83, 89, 113, ...], otherwise a(n) = 3+n-A156874(n).

A319706 Filter sequence which for primes p records the prime signature of 2p+1, and for all other numbers assigns a unique number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 5, 6, 7, 8, 2, 9, 10, 11, 12, 13, 5, 14, 5, 15, 16, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 24, 30, 31, 32, 2, 33, 5, 34, 35, 36, 5, 37, 38, 39, 40, 41, 2, 42, 43, 44, 45, 46, 5, 47, 5, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5, 57, 24, 58, 59, 60, 61, 62, 5, 63, 64, 65, 2, 66, 67, 68, 69, 70, 2, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 5
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2018

Keywords

Comments

Restricted growth sequence transform of function f defined as f(n) = A046523(2n+1) when n is a prime, otherwise -n.
For all i, j:
A305810(i) = A305810(j) => a(i) = a(j),
and
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).

Crossrefs

Cf. A005384 (positions of 2's), A234095 (positions of 5's).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A319706aux(n) = if(isprime(n),A046523(n+n+1),-n);
    v319706 = rgs_transform(vector(up_to,n,A319706aux(n)));
    A319706(n) = v319706[n];

A305977 Filter sequence combining prime signatures of n and 2n-1.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 6, 3, 5, 7, 8, 4, 9, 5, 10, 7, 11, 2, 11, 5, 5, 12, 13, 14, 15, 16, 11, 7, 17, 2, 18, 15, 5, 15, 19, 2, 20, 15, 13, 21, 17, 7, 11, 8, 15, 7, 22, 3, 23, 5, 8, 24, 13, 5, 25, 5, 15, 12, 26, 4, 15, 27, 28, 15, 17, 7, 29, 5, 17, 7, 30, 7, 20, 8, 8, 20, 31, 2, 22, 32, 5, 24, 33, 34, 20, 5, 35, 7, 33, 5, 11, 15, 15, 36, 37, 2, 38, 8, 19, 7, 31
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2018

Keywords

Comments

Restricted growth sequence transform of A286257.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    Aux305977(n) = [A046523(n),A046523(n+n-1)];
    v305977 = rgs_transform(vector(up_to,n,Aux305977(n)));
    A305977(n) = v305977[n];

A305894 Filter sequence for a(Sophie Germain primes) = constant sequences.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 5, 6, 7, 8, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 2, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 2, 76, 77, 78, 79, 80, 2, 81
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A305978(i) = A305978(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    A156660(n) = (isprime(n)&&isprime(2*n+1)); \\ From A156660
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    v156874 = partialsums(A156660, up_to);
    A156874(n) = v156874[n];
    A305894(n) = if(n<2,n,if(A156660(n),2,1+n-A156874(n)));

Formula

a(1) = 1; for n > 1, a(n) = 2 if A156660(n) == 1 [when n is in A005384 = 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, ...], otherwise a(n) = 1+n-A156874(n).
Showing 1-4 of 4 results.