cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305976 Filter sequence for a(prime^k) = constant sequences.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 5, 2, 6, 7, 2, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 2, 14, 2, 15, 2, 2, 16, 17, 18, 19, 2, 20, 21, 22, 2, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 32, 33, 34, 35, 2, 36, 2, 37, 38, 2, 39, 40, 2, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 60, 61, 62, 63, 2, 64, 65, 66, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 100000;
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    v065515 = partialsums(n -> (omega(n)<=1), up_to);
    A065515(n) = v065515[n];
    A085970(n) = (n - A065515(n));
    A305976(n) = if(1==n,n,if(isprimepower(n),2,2+A085970(n)));

Formula

a(1) = 1, for n > 1, if A010055(n) = 1 [when n is in A246655], a(n) = 2, otherwise a(n) = 2+A085970(n) = running count from 3 onward.

A305975 Filter sequence: All prime powers p^k, k >= 1, are allotted to distinct equivalence classes according to their exponent k, while all other numbers occur in singular equivalence classes of their own.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 3, 16, 5, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 3, 32, 33, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 53, 54, 2, 55, 10, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 67, 68, 2, 69, 70, 71
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2018

Keywords

Comments

Restricted growth sequence transform of A305974.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A305976(i) = A305976(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v065515 = partialsums(n -> (omega(n)<=1), up_to);
    A065515(n) = v065515[n];
    A085970(n) = (n - A065515(n));
    A305974(n) = if(1==n,n,my(e = isprimepower(n)); if(e,-e,1+A085970(n)));
    v305975 = rgs_transform(vector(up_to,n,A305974(n)));
    A305975(n) = v305975[n];

Formula

a(prime) = 2, a(prime^2) = 3, a(prime^3) = 5, a(prime^4) = 10, a(prime^5) = 19.

A334868 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(1) = 0 and for n > 1, f(n) = -1 if n is in A050376, and f(n) = A334870(n) otherwise.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 8, 2, 2, 9, 2, 10, 11, 12, 2, 13, 2, 14, 15, 16, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 2, 40, 41, 6, 42, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 51, 52, 2, 53, 2, 54, 2, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 2, 67, 68, 8, 2, 69, 2, 70, 71
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

For all i, j: A305979(i) = A305979(j) => a(i) = a(j) => A334872(i) = A334872(j).

Crossrefs

Cf. A050376 (positions of 2's), A305979, A334869, A334870, A334872.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A334868aux(n) = if(1==n,0,if(A302777(n),-1,A334870(n)));
    v334868 = rgs_transform(vector(up_to,n,A334868aux(n)));
    A334868(n) = v334868[n];
Showing 1-3 of 3 results.