cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305992 The sequence whose indicator function is I in conjectured formula A300997(n) = 2*n - Sum_{k=1..n} I(k), as long as the conjecture holds.

Original entry on oeis.org

1, 2, 4, 8, 15, 24, 32, 48, 62, 80, 101, 122, 147, 171, 202, 230, 267, 299, 339, 377, 418, 464, 509, 559, 611, 664, 719, 776, 836, 896, 960, 1024, 1098, 1167, 1240, 1315, 1392, 1471, 1553, 1642, 1724, 1816, 1906, 1999, 2094, 2190, 2290, 2392, 2499, 2599, 2713, 2818, 2937, 3048, 3166, 3288
Offset: 1

Views

Author

Luc Rousseau, Jun 16 2018

Keywords

Comments

A300997(n) is believed to be equal to 2*n - Sum_{k=1..n} I(k), where I is the indicator function of some other sequence -- let it be this sequence. This sequence is finite if the conjecture is false.

Crossrefs

Cf. A300997.

Programs

  • C
    #include 
    #include 
    #define N 10000
    void e(int *t, int *s) {
      int T[N], i = 0; memset(T, 0, sizeof(T));
      while (i < *s) {
        int f = t[i] / 2;
        T[i] += f + (t[i] % 2);
        T[++ i] += f;
      }
      if (T[*s] != 0) { *s += 1; }
      for (i = 0; i < *s; i ++) { t[i] = T[i]; }
    }
    int f(int n) {
      int t[N], s = 1, i = 0; t[0] = n;
      while (s != n) { i ++; e(t, &s); }
      return 2 * n - i;
    }
    int main() {
      int n, last = 1, current;
      for (n = 1; n <= N; n ++) {
        current = f(n);
        switch (current - last) {
        case 0: break;
        case 1: printf("%d, ", n); fflush(stdout); break;
        default: fprintf(stderr, "CONJECTURE IS FALSE"); return;
        }
        last = current;
      }
      printf("\n");
    }