A306005 Number of non-isomorphic set-systems of weight n with no singletons.
1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(6) = 12 set-systems: {{1,2,3,4,5,6}} {{1,2},{3,4,5,6}} {{1,5},{2,3,4,5}} {{3,4},{1,2,3,4}} {{1,2,3},{4,5,6}} {{1,2,5},{3,4,5}} {{1,3,4},{2,3,4}} {{1,2},{1,3},{2,3}} {{1,2},{3,4},{5,6}} {{1,2},{3,5},{4,5}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
Comments