A306009 Inverse Weigh transform of A000085.
1, 2, 2, 7, 14, 43, 130, 446, 1544, 5773, 22170, 89356, 370198, 1591379, 7020014, 31922981, 148679262, 710828036, 3474337098, 17379964444, 88739068866, 462670294023, 2458638559154, 13317850411827, 73432568553848, 412120738922369, 2351720323257872
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..800
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= proc(n) option remember; g(n)-b(n, n-1) end: seq(a(n), n=1..30);
-
Mathematica
g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = g[n] - b[n, n - 1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Oct 27 2021, after Alois P. Heinz *)
Formula
Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} A000085(n) * x^n.