A306014 Numbers k such that A055228(k)^2 - A055228(k) is a multiple of k, where A055228(k) is ceiling(sqrt(k!)).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 28, 29, 30, 42, 46, 50, 52, 99, 134, 148, 165, 205, 245, 249, 315, 390, 441, 461, 525, 560, 763, 962, 1596, 1666, 1716, 1847, 1854, 1860, 3515, 4501, 5179, 6850, 7345, 7867, 8940, 9491, 9523, 15688, 19988, 23574, 23956
Offset: 1
Keywords
Examples
For k=6, A055228(6) = ceiling(sqrt(6!)) = 27, and 27^2-27 = 702, which is a multiple of 6.
References
- Hazewinkel, Michiel, ed. (2001) [1994], Gamma Function, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..89 (all terms up to 10^6, n = 1..70 from Jon E. Schoenfield)
Programs
-
Mathematica
Select[Range[4600],Divisible[Ceiling[Sqrt[#!]]^2-Ceiling[Sqrt[#!]],#]&] (* Harvey P. Dale, Mar 02 2023 *)
-
PARI
default(realprecision,10^5); for(n=1,10^4, if( Mod( ceil(sqrt(n!)) - ceil(sqrt(n!))^2 , n) == 0, print1(n,", "))); \\ Joerg Arndt, Jun 17 2018
Extensions
Terms > 99 from Joerg Arndt, Jun 17 2018