A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size.
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0
Keywords
Examples
The a(3) = 6 set-systems in which all sets have the same size: {{1,2,3}} {{1}, {2}, {3}} {{1,2}, {1,3}} {{1,2}, {2,3}} {{1,3}, {2,3}} {{1,2}, {1,3}, {2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..14
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
-
PARI
a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024
Formula
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024
Comments