A306023 Stirling transform of partitions into distinct parts (A000009).
1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..573
- Eric Weisstein's World of Mathematics, Stirling Transform.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> add(b(j)*Stirling2(n, j), j=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
-
Mathematica
Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}]
Formula
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000009(k).