cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306023 Stirling transform of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 391, 1875, 9822, 55817, 340535, 2208681, 15118109, 108677575, 817914056, 6431115486, 52741729600, 450432487463, 3999401133601, 36853795902353, 351799243932131, 3472526583025397, 35382850151528847, 371592232539942447, 4016792440158613798
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 17 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> add(b(j)*Stirling2(n, j), j=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 17 2018
  • Mathematica
    Table[Sum[StirlingS2[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A000009(k).