cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306070 Partial sums of A116550: Sum_{k=1..n} bphi(k) where bphi(k) is the bi-unitary analog of Euler's totient function.

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 20, 27, 35, 41, 51, 59, 71, 80, 89, 104, 120, 132, 150, 164, 178, 193, 215, 232, 256, 274, 300, 321, 349, 364, 394, 425, 448, 472, 497, 526, 562, 589, 617, 648, 688, 709, 751, 786, 820, 853, 899, 935, 983, 1019, 1056, 1098, 1150, 1189
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A002088 and A177754.

Crossrefs

Programs

  • Mathematica
    bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; Accumulate[Table[bphi[n], {n, 1, 100}]] (* after Jean-François Alcover at A116550 *)
    phi[x_, n_] := DivisorSum[n, MoebiusMu[#]*Floor[x/#] &]; bphi[n_] := DivisorSum[n, (-1)^PrimeNu[#]*phi[n/#, #] &, CoprimeQ[#, n/#] &]; Accumulate[Array[bphi, 100]] (* Amiram Eldar, Jun 30 2025 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    bphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1));
    a(n) = sum(k=1, n, bphi(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n^2/2 + O(n*log(n)^2), where A = A306071.