A306070 Partial sums of A116550: Sum_{k=1..n} bphi(k) where bphi(k) is the bi-unitary analog of Euler's totient function.
1, 2, 4, 7, 11, 14, 20, 27, 35, 41, 51, 59, 71, 80, 89, 104, 120, 132, 150, 164, 178, 193, 215, 232, 256, 274, 300, 321, 349, 364, 394, 425, 448, 472, 497, 526, 562, 589, 617, 648, 688, 709, 751, 786, 820, 853, 899, 935, 983, 1019, 1056, 1098, 1150, 1189
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function, Journal of Integer Sequences, Vol. 12 (2009), Article 09.5.2.
Programs
-
Mathematica
bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; Accumulate[Table[bphi[n], {n, 1, 100}]] (* after Jean-François Alcover at A116550 *) phi[x_, n_] := DivisorSum[n, MoebiusMu[#]*Floor[x/#] &]; bphi[n_] := DivisorSum[n, (-1)^PrimeNu[#]*phi[n/#, #] &, CoprimeQ[#, n/#] &]; Accumulate[Array[bphi, 100]] (* Amiram Eldar, Jun 30 2025 *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m))); bphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1)); a(n) = sum(k=1, n, bphi(k)); \\ Michel Marcus, Jun 20 2018
Formula
a(n) = A*n^2/2 + O(n*log(n)^2), where A = A306071.
Comments