A306071 Decimal expansion of Sum_{n>=1} (-1)^omega(n) phi(n)^2/n^4, where omega(n) is the number of distinct prime factors of n (A001221) and phi is Euler's totient function (A000010).
8, 0, 7, 3, 3, 0, 8, 2, 1, 6, 3, 6, 2, 0, 5, 0, 3, 9, 1, 4, 8, 6, 5, 4, 2, 7, 9, 9, 3, 0, 0, 3, 1, 1, 3, 4, 0, 2, 5, 8, 4, 5, 8, 2, 5, 0, 8, 1, 5, 5, 6, 6, 4, 4, 0, 1, 8, 0, 0, 5, 2, 0, 7, 7, 0, 4, 4, 1, 3, 8, 1, 4, 8, 4, 9, 3, 7, 5, 1, 8, 6, 4, 9, 6, 9, 5, 6, 0, 9, 3, 5, 0, 9, 6, 2, 9, 4, 8, 3, 7, 6, 5, 0, 1, 1, 8
Offset: 0
Examples
0.80733082163620503914...
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.
Links
- D. Suryanarayana, The number of bi-unitary divisors of an integer, The theory of arithmetic functions, ed. Anthony A. Gioia and Donald L. Goldsmith, Springer, Berlin, Heidelberg, 1972, pp. 273-282.
- D. Suryanarayana and R. Sita Rama Chandra Rao, The number of bi-unitary divisors of an integer - II, Journal of the Indian mathematical Society, Vol. 39, No. 1-4 (1975), pp. 261-280.
- László Tóth, On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function, Journal of Integer Sequences, Vol. 12 (2009), Article 09.5.2.
- László Tóth, Multiplicative arithmetic functions of several variables: a survey, in Themistocles M. Rassias and Panos M. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, NY, 2014, pp. 483-514 (see p. 508), preprint, arXiv:1310.7053 [math.NT] (2014) (see p. 21).
Programs
-
Mathematica
cc = CoefficientList[Series[Log[1 - (p - 1)/(p^2*(p + 1))] /. p -> 1/x, {x, 0, 36}], x]; f = FindSequenceFunction[cc]; digits = 20; A = Exp[NSum[f[n + 1 // Floor]*(PrimeZetaP[n]), {n, 2, Infinity}, NSumTerms -> 16 digits, WorkingPrecision -> 16 digits]]; RealDigits[A, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *) $MaxExtraPrecision = 1000; Do[Print[Zeta[2] * Exp[-N[Sum[q = Expand[(2*p^2 - 2*p^3 + p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}], 120]]], {t, 300, 1000, 100}] (* Vaclav Kotesovec, May 29 2020 *)
-
PARI
prodeulerrat(1 - (p-1)/(p^2 * (p+1))) \\ Amiram Eldar, Mar 18 2021
Formula
Equals Product_{p prime} (1 - (p-1)/(p^2 * (p+1))).
Equals zeta(2) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4).
Extensions
a(1)-a(20) from Jean-François Alcover, Jun 19 2018
a(20)-a(24) from Jon E. Schoenfield, May 27 2019
More terms from Vaclav Kotesovec, May 29 2020
Comments