A304866
E.g.f. A(x) satisfies: Sum_{n>=0} (n*x - A(x))^n / n! = 1.
Original entry on oeis.org
1, 1, 5, 40, 434, 5921, 97152, 1861224, 40757712, 1003975497, 27471881920, 826643389408, 27127000901376, 964082532067097, 36887864803320832, 1511803871474266800, 66072899130124806144, 3067434610357079350833, 150748671875250474491904, 7818483194884075165619704, 426760505829170289041408000, 24454432374649526694779591985, 1467784259166552629365984329728
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 5*x^3/3! + 40*x^4/4! + 434*x^5/5! + 5921*x^6/6! + 97152*x^7/7! + 1861224*x^8/8! + 40757712*x^9/9! + 1003975497*x^10/10! + ...
such that
1 = 1 + (x - A(x)) + (2*x - A(x))^2/2! + (3*x - A(x))^3/3! + (4*x - A(x))^4/4! + (5*x - A(x))^5/5! + (6*x - A(x))^6/6! + (7*x - A(x))^7/7! + ...
Also,
-LambertW(-x) = A(x) + A(x)*(2*x - A(x))/2! + A(x)*(3*x - A(x))^2/3! + A(x)*(4*x - A(x))^3/4! + A(x)*(5*x - A(x))^4/5! + A(x)*(6*x - A(x))^5/6! + ... = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/6! + ...
Further,
LambertW(-x)/(-x) = 1 + (2*x - A(x)) + (3*x - A(x))^2/2! + (4*x - A(x))^3/3! + (5*x - A(x))^4/4! + (6*x - A(x))^5/5! + (7*x - A(x))^6/6! + ... = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + ...
Note the following series relations involving e.g.f. A(x):
Sum_{n>=0} -A(x) * (n*x - A(x))^(n-1) / n! = 1 - Sum_{n>=1} n^(n-1) * x^n / n! = 1 + LambertW(-x),
Sum_{n>=0} ((n + m)*x - A(x))^n / n! = Sum_{n>=0} m*(n + m)^(n-1) * x^n / n! = ( LambertW(-x)/(-x) )^m.
These relations imply
( LambertW(-x) / (-x) )^(-A(x)/x) = 1 + LambertW(-x)
giving A(x) = log(1 + LambertW(-x)) * x / LambertW(-x).
-
nmax = 20; Rest[CoefficientList[Series[Log[1 + LambertW[-x]] * x / LambertW[-x], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Sep 01 2020 *)
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, (m*x - x*Ser(A))^m/m!), #A)); n!*A[n]}
for(n=1, 30, print1(a(n), ", "))
A306066
E.g.f. A(x) satisfies: Sum_{n>=0} 1/n! * Product_{k=0..n} (n+1-k)*x + (k+1)*A(x) = 0.
Original entry on oeis.org
-1, 2, -6, 36, -300, 3270, -43680, 691992, -12670560, 263281050, -6119720640, 157325242140, -4431909081600, 135757694361198, -4492575720622080, 159723265791222000, -6071451523596103680, 245720759937001346610, -10548874580411105832960, 478801529559871868317140, -22909292930454154076160000, 1152457216135660417348971990, -60807227650606789798265487360, 3357825559218695417748978547080
Offset: 1
E.g.f.: A(x) = -x + 2*x^2/2! - 6*x^3/3! + 36*x^4/4! - 300*x^5/5! + 3270*x^6/6! - 43680*x^7/7! + 691992*x^8/8! - 12670560*x^9/9! + 263281050*x^10/10! - 6119720640*x^11/11! + 157325242140*x^12/12! - 4431909081600*x^13/13! + 135757694361198*x^14/14! - 4492575720622080*x^15/15! + 159723265791222000*x^16/16! + ...
such that
0 = (x + A(x)) + (2*x + A(x))*(x + 2*A(x))/1! + (3*x + A(x))*(2*x + 2*A(x))*(x + 3*A(x))/2! + (4*x + A(x))*(3*x + 2*A(x))*(2*x + 3*A(x))*(x + 4*A(x))/3! + (5*x + A(x))*(4*x + 2*A(x))*(3*x + 3*A(x))*(2*x + 4*A(x))*(x + 5*A(x))/4! + ...
Also,
1 = 1 + (x + A(x))/(1!*2) + (3*x + A(x))*(x + 3*A(x))/(2!*2^2) + (5*x + A(x))*(3*x + 3*A(x))*(x + 5*A(x))/(3!*2^3) + (7*x + A(x))*(5*x + 3*A(x))*(3*x + 5*A(x))*(x + 7*A(x))/(4!*2^4) + ...
EXAMPLES OF SUMS.
The e.g.f. A(x) satisfies the following sums.
(E1) Define
S1(m,p) = Sum_{n>=0} 1/n! * Product_{k=0..n} (n+1-k - m)*x + (k+1 - p)*A(x),
then
S1(m,p) = -(m*x + p*A(x)) * A(x)^(2*m-2) * x^(2*p-2) / (x + A(x))^(m+p-2).
(E2) Define
S2(m,p) = Sum_{n>=0} 1/(n!*2^n) * Product_{k=1..n} (2*(n-k)+1 - m)*x + (2*k-1 - p)*A(x),
then
S2(m,p) = (-A(x)/x)^( (m*x + p*A(x))/(x - A(x)) ).
Examples of S2(m,p):
S2(0,0) = 1,
S2(1,-1) = -A(x)/x,
S2(-1,1) = -x/A(x),
S2(1,2) = (-A(x)/x)^( (x + 2*A(x))/(x - A(x)) ).
Examples of S1(m,p):
S1(0,0) = 0,
S1(1,0) = -(x + A(x)) / x,
S1(2,0) = -2*A(x)^2 / x,
S1(3,0) = -3*A(x)^4 / (x*(x + A(x))),
S1(0,1) = -(x + A(x)) / A(x),
S1(0,2) = -2*x^2 / A(x),
S1(0,3) = -3*x^4 / (A(x)*(x + A(x))),
S1(1,1) = -(x + A(x)),
S1(2,2) = -2*x^2*A(x)^2 / (x + A(x)),
S1(3,3) = -3*x^4*A(x)^4 / (x + A(x))^3,
S1(2,1) = -A(x)^2 * (2*x + A(x)) / (x + A(x)),
S1(1,2) = -x^2 * (x + 2*A(x)) / (x + A(x)),
S1(4,3) = -x^4*A(x)^6 * (4*x + 3*A(x)) / (x + A(x))^5.
-
{a(n) = my(A=[-1]); for(i=0,n, A=concat(A,0); A[#A] = -polcoeff( sum(m=0, #A, 1/m!*prod(k=0, m, (m+1-k)*x + (k+1)*x*Ser(A) ) ), #A)); n!*A[n]}
for(n=1,30, print1(a(n),", "))
A306067
E.g.f. A(x) satisfies: Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n-k) + (k+1)*A(x) = 1.
Original entry on oeis.org
1, 4, 21, 178, 2279, 39066, 835132, 21400198, 640239525, 21920851282, 845615003996, 36298192983482, 1716348366690487, 88653661788525666, 4967006270867149524, 300043327305644202366, 19440451816128996788777, 1344909407655243937857826, 98949254253416815493778796, 7714902418308597200477578514, 635444724815621395463510504211, 55134789286331454820101232131938
Offset: 0
G.f.: A(x) = 1 + 4*x + 21*x^2/2! + 178*x^3/3! + 2279*x^4/4! + 39066*x^5/5! + 835132*x^6/6! + 21400198*x^7/7! + 640239525*x^8/8! + 21920851282*x^9/9! + 845615003996*x^10/10! + ...
such that
1 = (0 + A(x)) - (1 + A(x))*(0 + 2*A(x))*x + (2 + A(x))*(1 + 2*A(x))*(0 + 3*A(x))*x^2/2! - (3 + A(x))*(2 + 2*A(x))*(1 + 3*A(x))*(0 + 4*A(x))*x^3/3! + (4 + A(x))*(3 + 2*A(x))*(2 + 3*A(x))*(1 + 4*A(x))*(0 + 5*A(x))*x^4/4! - (5 + A(x))*(4 + 2*A(x))*(3 + 3*A(x))*(2 + 4*A(x))*(1 + 5*A(x))*(0 + 6*A(x))*x^5/5! + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A] = -Vec( sum(n=0,#A, (-x)^n/n!* prod(k=0,n, (n-k) + (k+1)*Ser(A) ) ) )[#A] ); n!*A[n+1]}
for(n=0,20, print1(a(n),", "))
A306089
G.f. A(x) satisfies: Sum_{n>=0} (-1)^n * Product_{k=1..n} x^(n+1-k) + (-A(x))^k = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 21, 68, 186, 495, 1335, 3744, 10870, 32120, 95565, 284830, 850580, 2548436, 7669604, 23192434, 70443076, 214768128, 656857897, 2014416494, 6192794179, 19081689920, 58923909932, 182331403224, 565289067360, 1755737915942, 5462257817753, 17019938788706, 53109742992332, 165952503650622, 519222849063545, 1626498619326355, 5100995860701418
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + x^4 + x^5 + 6*x^6 + 21*x^7 + 68*x^8 + 186*x^9 + 495*x^10 + 1335*x^11 + 3744*x^12 + 10870*x^13 + 32120*x^14 + 95565*x^15 + ...
such that
1 = 1 - (x - A(x)) + (x + A(x)^2)*(x^2 - A(x)) - (x - A(x)^3)*(x^2 + A(x)^2)*(x^3 - A(x)) + (x + A(x)^4)*(x^2 - A(x)^3)*(x^3 + A(x)^2)*(x^4 - A(x)) - (x - A(x)^5)*(x^2 + A(x)^4)*(x^3 - A(x)^3)*(x^4 + A(x)^2)*(x^5 - A(x)) + ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); A[#A] = -Vec( sum(m=0,#A, (-1)^m * prod(k=1,m, x^(m+1-k) + (-x)^k*Ser(A)^k ) ) )[#A+1]); A[n]}
for(n=1,30, print1(a(n),", "))
A306091
G.f. A(x) satisfies: (1 + A(x))^A(x) = (1 + x)^x ; this sequence gives the denominators of the coefficients of x^n in g.f. A(x).
Original entry on oeis.org
1, 2, 4, 6, 8, 1440, 960, 120960, 48384, 7257600, 1612800, 479001600, 4561920, 5230697472000, 10461394944000, 7846046208000, 6974263296000, 9146248151040000, 8536498274304000, 1502674769756160000, 1857852442607616000, 67440043666656460800000, 44960029111104307200000, 18613452051997183180800000, 954536002666522214400000
Offset: 1
G.f.: A(x) = -x + 1/2*x^2 - 1/4*x^3 + 1/6*x^4 - 1/8*x^5 + 143/1440*x^6 - 79/960*x^7 + 8483/120960*x^8 - 2953/48384*x^9 + 391753/7257600*x^10 - 77983/1612800*x^11 + 20963473/479001600*x^12 - 182269/4561920*x^13 + 192178874539/5230697472000*x^14 - 355629691849/10461394944000*x^15 + 248105704337/7846046208000*x^16 - 206101262483/6974263296000*x^17 + 253628381647657/9146248151040000*x^18 - 222936799599583/8536498274304000*x^19 + 37078279922025269/1502674769756160000*x^20 + ... + A306090(n)/A306091(n)*x^n + ...
such that
(E.1) 1 = 1 + (x + A(x)) + (x + 2*A(x))*(2*x + A(x))/2! + (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3! + (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4! + (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...
(E.2) (1 + x)^p = 1 + (x + (1-p)*A(x)) + (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2! + (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3! + (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...
(E.3) (1 + A(x))^m = 1 + ((1-m)*x + A(x)) + ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2! + ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3! + ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...
FUNCTIONAL EQUATIONS.
The series A(x) satisfies:
(E.4) (1 + A(x))^A(x) = (1 + x)^x = 1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...
GENERATING METHOD.
Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.
If we start with A = -x, and iterate
(E.5) A = (A + x*log(1 + x)/log(1 + A))/2
then A will converge to g.f. A(x).
-
nmax = 25; sol = {a[1] -> -1};
Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[(1 + A[x])^A[x] - (1 + x)^x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax + 1}];
sol /. Rule -> Set;
a /@ Range[1, nmax] // Denominator (* Jean-François Alcover, Nov 02 2019 *)
-
/* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */
{a(n) = my(A = -x +x*O(x^n)); for(i=1,n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); denominator( polcoeff(A,n) )}
A306065
E.g.f. A(x) satisfies: Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k) - (k+1)*A(x) = 0.
Original entry on oeis.org
1, 1, 2, 9, 60, 545, 6240, 86499, 1407840, 26328105, 556338240, 13110436845, 340916083200, 9696978168657, 299505048041472, 9982704111951375, 357144207270359040, 13651153329833408145, 555203925284795043840, 23940076477993593415857, 1090918710974007336960000, 52384418915257291697680545
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 60*x^4/4! + 545*x^5/5! + 6240*x^6/6! + 86499*x^7/7! + 1407840*x^8/8! + 26328105*x^9/9! + 556338240*x^10/10! + ...
such that
0 = (1 - A(x)) - (2 - A(x))*(1 - 2*A(x))*x/1! + (3 - A(x))*(2 - 2*A(x))*(1 - 3*A(x))*x^2/2! - (4 - A(x))*(3 - 2*A(x))*(2 - 3*A(x))*(1 - 4*A(x))*x^3/3! + (5 - A(x))*(4 - 2*A(x))*(3 - 3*A(x))*(2 - 4*A(x))*(1 - 5*A(x))*x^4/4! + ...
Also,
1 = 1 - (1 - A(x))*x/(1!*2) + (3 - A(x))*(1 - 3*A(x))*x^2/(2!*2^2) - (5 - A(x))*(3 - 3*A(x))*(1 - 5*A(x))*x^3/(3!*2^3) + (7 - A(x))*(5 - 3*A(x))*(3 - 5*A(x))*(1 - 7*A(x))*x^4/(4!*2^4) - (9 - A(x))*(7 - 3*A(x))*(5 - 5*A(x))*(3 - 7*A(x))*(1 - 9*A(x))*x^5/(5!*2^5) + ...
More generally, the e.g.f. A(x) satisfies the following sums.
Define
S1(m,p) = Sum_{n>=0} (-x)^n/n! * Product_{k=0..n} (n+1-k - m) - (k+1 - p)*A(x),
then
S1(m,p) = -(m - p*A(x)) * A(x)^(2*m-2) * x^(m+p-2) / (A(x) - 1)^(m+p-2).
Define
S2(m,p) = Sum_{n>=0} (-x/2)^n/n! * Product_{k=1..n} (2*(n-k)+1 - m) - (2*k-1 - p)*A(x),
then
S2(m,p) = A(x)^( (m - p*A(x))/(1 + A(x)) ).
RELATED SERIES.
The e.g.f. also satisfies A(x) = 1/A(-x*A(x)), where:
A(-x*A(x)) = 1/A(x) = 1 - x - 3*x^3/3! - 12*x^4/4! - 125*x^5/5! - 1320*x^6/6! - 18249*x^7/7! - 290976*x^8/8! - 5385393*x^9/9! - 112642560*x^10/10! + ...
Also,
(A(x) - 1)/x = 1 + x + 3*x^2/2! + 15*x^3/3! + 109*x^4/4! + 1040*x^5/5! + 12357*x^6/6! + 175980*x^7/7! + 2925345*x^8/8! + 55633824*x^9/9! + 1191857895*x^10/10! + 28409673600*x^11/11! + 745921397589*x^12/12! + ...
appears commonly in formulas for e.g.f. A(x).
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (-x)^m/m!*prod(k=0, m, (m+1-k) - (k+1)*Ser(A) ) ), #A-1)); n!*A[n+1]}
for(n=0, 25, print1(a(n), ", "))
A306092
G.f. A(x) satisfies: (1 + A(x))^A(x) = (1+x)^x, where A(x) = Sum_{n>=1} a(n)*x^n/(2*n-1)!.
Original entry on oeis.org
-1, 3, -30, 840, -45360, 3963960, -512431920, 91708016400, -21708518832000, 6566197230552960, -2470377569057798400, 1131411784221938419200, -619741850665486348800000, 400063411654998957081216000, -300571110264723992167009536000, 260020540519396684696076728320000, -256606704941070116606793272893440000, 286541492507208304817420296882114560000
Offset: 1
G.f.: A(x) = -x + 3*x^2/3! - 30*x^3/5! + 840*x^4/7! - 45360*x^5/9! + 3963960*x^6/11! - 512431920*x^7/13! + 91708016400*x^8/15! - 21708518832000*x^9/17! + 6566197230552960*x^10/19! - 2470377569057798400*x^11/21! + 1131411784221938419200*x^12/23! - 619741850665486348800000*x^13/25! + ...
such that
(E.1) 1 = 1 + (x + A(x)) + (x + 2*A(x))*(2*x + A(x))/2! + (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x))/3! + (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x))/4! + (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x))/5! + ...
(E.2) (1 + x)^p = 1 + (x + (1-p)*A(x)) + (x + (2-p)*A(x))*(2*x + (1-p)*A(x))/2! + (x + (3-p)*A(x))*(2*x + (2-p)*A(x))*(3*x + (1-p)*A(x))/3! + (x + (4-p)*A(x))*(2*x + (3-p)*A(x))*(3*x + (2-p)*A(x))*(4*x + (1-p)*A(x))/4! + ...
(E.3) (1 + A(x))^m = 1 + ((1-m)*x + A(x)) + ((1-m)*x + 2*A(x))*((2-m)*x + A(x))/2! + ((1-m)*x + 3*A(x))*((2-m)*x + 2*A(x))*((3-m)*x + A(x))/3! + ((1-m)*x + 4*A(x))*((2-m)*x + 3*A(x))*((3-m)*x + 2*A(x))*((4-m)*x + A(x))/4! + ...
FUNCTIONAL EQUATION.
The series A(x) satisfies:
(E.4) (1 + A(x))^A(x) = (1 + x)^x = 1 + x^2 - 1/2*x^3 + 5/6*x^4 - 3/4*x^5 + 33/40*x^6 - 5/6*x^7 + 2159/2520*x^8 - 209/240*x^9 + ...
GENERATING METHOD.
Although the functional equation (1 + A(x))^A(x) = (1 + x)^x has an infinite number of solutions, one may arrive at the g.f. A(x) by the following iteration.
If we start with A = -x, and iterate
(E.5) A = (A + x*log(1 + x)/log(1 + A))/2
then A will converge to g.f. A(x).
-
/* From Functional Equation (1 + A(x))^A(x) = (1 + x)^x */
{a(n) = my(A = -x +x*O(x^n)); for(i=1, n, A = (A + x*log(1+x +x*O(x^n))/log(1+A))/2 ); (2*n-1)! * polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
A306087
G.f. A(x) satisfies: Sum_{n>=0} Product_{k=1..n} (n+1-k)*x + k*A(x) = 1.
Original entry on oeis.org
-1, 1, -1, -2, 8, 56, -281, -3061, 18612, 271129, -1925781, -34967550, 284063311, 6174304311, -56535769915, -1431894779510, 14610783773266, 422789237646634, -4761801655073506, -155050750819877478, 1911855043475987609, 69202778917256845631, -927610459464373932427, -36955258706329671973028, 535191096878546873823897, 23273612576939618406997055, -362206459402896340382856127
Offset: 1
G.f.: A(x) = -x + x^2 - x^3 - 2*x^4 + 8*x^5 + 56*x^6 - 281*x^7 - 3061*x^8 + 18612*x^9 + 271129*x^10 - 1925781*x^11 - 34967550*x^12 + 284063311*x^13 + 6174304311*x^14 - 56535769915*x^15 - 1431894779510*x^16 + ...
such that
1 = 1 + (x + A(x)) + (x + 2*A(x))*(2*x + A(x)) + (x + 3*A(x))*(2*x + 2*A(x))*(3*x + A(x)) + (x + 4*A(x))*(2*x + 3*A(x))*(3*x + 2*A(x))*(4*x + A(x)) + (x + 5*A(x))*(2*x + 4*A(x))*(3*x + 3*A(x))*(4*x + 2*A(x))*(5*x + A(x)) + ...
also, A(A(x)) = x.
-
{a(n) = my(A=[-1]); for(i=1,n, A = concat(A,0); A[#A] = -Vec( sum(n=0,#A, prod(k=1,n, (n+1-k)*x + (k)*x*Ser(A) ) ) )[#A+1] );A[n]}
for(n=1,30, print1(a(n),", "))
Showing 1-8 of 8 results.
Comments